簡易檢索 / 詳目顯示

研究生: 張立鵬
Chang, Li-peng
論文名稱: 大氣超細微粒物化特性與環境因子關連性研究
Variation of the relationship among ultrafine inorganic aerosols, gaseous precusors and meterological parameters
指導教授: 蔡俊鴻
Tsai, Jiun-Horng
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 170
中文關鍵詞: 水溶性離子事件日前驅氣體硫轉化率氮轉化率硝酸銨
外文關鍵詞: episode day, water-soluble ion, sulfur conversion ratio, nitrogen conversion ratio, ammonium nitrate
相關次數: 點閱:148下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討大氣超細懸浮微粒水溶性離子成份濃度,與前驅氣體(SOx、NOx及NH3)及氣象因子(溫度、相對濕度)之關聯性,以瞭解南台灣微粒污染事件之大氣反應機制。現場調查觀測工作於大寮空氣品質監測站進行,以MOUDI/Nano-MOUDI、ADS(Annular Denuder System)分別採集大氣懸浮微粒及前驅氣體樣品,應用超微量天平及離子層析儀(IC)分析微粒質量、所含水溶性離子及前驅氣體濃度與成份。
    研究結果顯示,高屏地區於懸浮微粒事件日與非事件日期間之大氣微粒粒徑分佈皆呈現三峰分佈型態,分別界於1.8~18 μm、0.18~1.8 μm及0.018~0.056 μm粒徑範圍。事件日與非事件日期間,日、夜粗微粒(1.8 µm <dp <18 µm)質量濃度差異不大;事件日夜間細微粒(0.1 µm <dp <1.8 µm)質量濃度則明顯高於其他時段濃度。研究結果顯示,發生粒狀物污染事件日與PM1濃度增高有密切關係。
    研究觀測不同採樣條件微粒中和比(NR值)與粒徑關係顯示,當大氣微粒粒徑小於0.1 µm時呈現偏鹼性,大氣微粒粒徑大於2.5 µm時呈偏中性或微酸性,大氣微粒粒徑介於0.18 - 1 µm呈中性。整體而言,大氣微粒酸鹼性與微粒粒徑大小具強烈關連性。
    研究結果顯示,高屏地區大氣衍生性氣膠(SO42-及NO3-)細粒徑波峰分佈主要界於0.18~1.8 μm;分析前驅氣體(SO2及NO2)於此粒徑範圍之氣固相轉化率顯示,夜間氮轉化率(Fn)於事件日為非事件日之4倍;夜間硫轉化率之(Fs)於事件日為非事件日之1.5倍。事件日期間夜間與日間之Fn及Fs皆隨大氣相對濕度增高而增加;非事件日期間之日間Fn與Fs隨大氣O3濃度增加呈升高現象。此結果與大氣高濕環境存在高濃度NO2、SO2及O3有關,亦說明大氣粒狀物污染事件日發生與氣固相轉換具密切關係。
    以熱力學反應理論探討大氣硝酸銨生成機制,觀測HNO3(g)及NH3(g)濃度積(Km)高於理論值平衡常數(Ke)。大氣HNO3(g)及NH3(g)濃度高低為影響Km之重要因素,且較相對濕度或溫度之影響更為重要。當大氣PM10濃度高於90 µg/m3, Km高於Ke,微粒鹽類易形成NH4NO3形式。大氣呈高濕環境,易產生相對濕度高於潮解之相對濕度(Deliquescence relative humidity, DRH)狀況,當HNO3(g)及NH3(g)濃度升高時,觀測K值高於理論值,反應易生成NH4NO3,多致大氣微粒濃度明顯增高。

    The purposes of this study built up the relationships among inorganic composition of aerosol, gas precursors and meteorological parameters. Furthermore, the ultrafine particle and gas precursor sampling technology are developed in this study. The sampling system used in this study, consisting of a MOUDI and a Nano-MOUDI, has been found useful in the previous studies. Ambient concentrations of gases were measured using an annular denuder system. A Dionex-120 ion chromatography unit was employed to analyze the inorganic ions under consideration. The filters were weighed using a high precision six digit electronic balance (Mettler MX5).
    These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter < 0.1 µm) and nano mode (PMnano, diameter < 0.056 µm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The fractions from the polluted days were higher than those from the normal days for particle size greater than 1 µm. This finding suggested that the PM1 (submicron aerosol particles) fraction played an important role in the ambient atmosphere on the polluted days. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1-1). Particles smaller than 0.1 µm were essentially basic, whereas those greater than 2.5 µm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 µm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study.
    During the episode days, the average particulate nitrate mass of accumulation mode (0.18-1.8 µm) measured over nighttime was about 4 times higher than those measured during non-episode days. In addition, the SO42- mass of accumulation mode during episode days was about 1.5 times higher than those during the nighttime of the non-episode days. These results might be attributed to high NO2, SO2 and ozone concentrations in a humid atmosphere, and also the fact that the gas-to-particle conversion played an important role during episode days.
    Under the thermodynamic theory to discuss the formation of NH4NO3, the measured concentration product (Km) was higher than calculated thermodynamical equilibrium constant (Ke). The ratio of Km/Ke increases with increasing Km, suggested that the levels of NH3 and HNO3, rather than the levels of temperature or RH. When there are high levels of gaseous ammonia and nitric acid in the atmosphere, the Km was higher than Ke during PM10 concentrations exceeded 90 µg/m3. Moreover, NH4NO3 was the probable chemical form of the nitrate present in the airborne fine particle, the level of relative humidity (RH) was above the deliquescence relative humidity (DRH) in a humid atmosphere.

    第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 1-3 研究架構 3 第二章 文獻回顧 6 2-1 大氣懸浮微粒來源組成與特性 6 2-1-1 大氣懸浮微粒主要來源 6 2-1-2 大氣懸浮微粒特性 11 2-2 懸浮微粒水溶性離子化學特性 17 2-2-1 水溶性離子來源及形成機制 17 2-2-2 水溶性離子之粒徑分佈 18 2-3 大氣衍生性氣膠形成機制及轉化現象 21 2-3-1 硫酸鹽與硝酸鹽之轉化生成現象 21 2-3-2 氣相前驅物與衍生性氣膠之關聯性 22 2-3-3 衍生性氣膠生成與大氣環境及氣象因子之關聯性 23 2-4 硝酸銨生成與氣相前驅物及大氣環境因子 25 2-5 國內大氣懸浮微粒相關研究 28 2-5-1 懸浮微粒成分濃度 28 2-5-2 組成特性與氣相污染物及氣象參數關連性 31 2-5-3 熱力學模式探討氣膠成分組成 33 第三章 研究方法 35 3-1 採樣方法 35 3-1-1 採樣位置選擇 35 3-1-2 採樣時段規劃 36 3-1-3 採樣時間推估 37 3-2 採樣設備 41 3-2-1 微孔均勻沈降衝擊器(MOUDI)及奈米微孔均勻沉降 衝擊器(Nano-MOUDI) 41 3-2-2 環狀擴散採樣器(ADS) 45 3-3 分析方法 49 3-3-1 秤重設備 49 3-3-2 水溶性離子成份分析設備及方法 50 3-4 品保品管作業 53 3-4-1 採樣前處理之品保品管 53 3-4-2 採樣工作之品保品管 54 3-4-3 分析程序之品保品管 55 第四章 結果與討論 60 4-1研究地點環境條件 60 4-1-1 環境特性 60 4-1-2 大氣氣象條件 61 4-2 大氣懸浮微粒粒徑分佈之物化特性 69 4-2-1微粒質量濃度粒徑分佈特徵 69 4-2-2 微粒主要水溶性無機鹽化學組成 81 4-2-3 微粒酸鹼性與粒徑特徵 93 4-3 氣相污染物之日夜變化特徵 97 4-4 衍生性氣膠與大氣環境之關係 106 4-4-1 氣固相轉化率指標-硫與氮 106 4-4-2 氣固相轉化率指標與大氣環境 112 4-4-3 衍生性氣膠與大氣環境 119 4-5 硝酸銨生成與粒狀物事件日 125 4-5-1 硝酸銨生成機制 128 4-5-2 硝酸銨生成與大氣環境. 130 4-5-3 硝酸銨生成與事件日 141 4-5-4 硝酸銨生成與前驅氣體控制 144 第五章 結論與建議 148 5-1 結論 148 5-2 建議 151 參考文獻 153 自述 167

    Allen, A.G., Harrison, R.M., Erisman, J.W. (1989). Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols. Atmospheric Environment 23: 1591-1599.
    Altshuller, A.P. (1982). Atmospheric concentrations and distributions of chemical substances. In the acidic deposition phenomenon and it’s effects, US environmental protection agency, Washington, DC.
    Appel, B.R., Kothny, E.L., Hoffer, E.M., Hidy, G.M., Wesolowski, J.J. (1978). Sulfate and nitrate data from the California aerosol characterization experiment (AICHEX). Environmental Science and Technology 12: 418-425.
    Appel, B.R., Tokiwa, Y., Holrer, E.M., Kothny, E.L., Haik, M., Wesolowski, J.J. (1980). Evaluation and development of procedures for determination of sulfuric acid, total particle-phase acidity and nitric acid in ambient air- Phase 11. California Air Resourse Board A8-Ill-31 final report.
    Barbara, J., Pitts, J. N. (1986). Atmospheric Chemistry, Fundamentals and experimental techniques. Wiley, New York.
    Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L. (2003). Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment 37: 2825-2835.
    Brook, J.R., Dann, T.F., Burnett, R.T. (1997). The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. Journal of the Air and Waste Management Association 47: 2-19.
    Buijsman, E., Aben, J.M.M., van Elzakker, B.G., Mennen, M.G. (1998). An automatic atmospheric ammonia network in the Netherlands: setup and results. Atmospheric Environment 32: 317-324.
    Cabada, J.C., Rees, S., Takahama, S., Khlystov, A., Pandis, S.N., Davidson, C.I., Robinson, A.L. (2004). Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmospheric Environment 38: 3127-3141.
    Calvert, J.G., Stockwell, W.R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental Science and Technology 17: 428-443.
    Calvert, J.G., Stockwell, W.R. (1984). Mechanism and rates of the gas-phase oxidations of sulfur dioxide and nitrogen oxides in the atmosphere. In: Calvert, J.G. (Ed.), SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Consideration. Butter-Worth, Boston, MA. 1-62.
    Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Voweles, P.D., Cohen, D.D., Bailey, G.M. (1997). Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment 31: 2061-2080.
    Chen, S.J., Hsieh, L.T., Tsai, C.C., Fang, G.C. (2003). Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days. Chemosphere 53: 29-41.
    Colbeck, I., Harrison, R.M. (1984). Ozone-secondary aerosol-visibility relationships in North-West England. Science of the Total Environment 34: 87-100.
    Dasch, J. M., Cadle, S. H. (1990). The removal of nitric acid to atmospheric particles during a wintertime field study. Atmospheric Environment 24A:2557-2562.
    Demetrios, D., Sotirios, G. (1999). Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece. Atmospheric Environment 33:3417-3425.
    Erickson, R.E., Yates, L.M., Clark, R.L., McEwen, D. (1977). The reaction of sulfur dioxide with ozone in water and its possible atmospheric significance. Atmospheric Environment 11:813-817.
    Fosco, T., Schmeling, M. (2006). Aerosol ion concentration dependence on atmospheric conditions in Chicago. Atmospheric Environment 40: 6638-6649.
    Geller, M.D., Kim, S., Misra, C., Sioutas, C., Olson, B.A., Marple, V.A. (2002). A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Science and Technology 36:748-762.
    Gupta, A., Kumar, R., Kumari, K.M., Srivastava, S.S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment 37: 4837-4846.
    Grosjean, D., Friedlander, S.K. (1975). Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere. Journal of the Air Pollution Control Association 25: 1038-1044.
    Hamer, W.J., Wu, Y.C. (1972). Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25℃. Journal of Physical and Chemical Reference Data 1:1047-1099.
    Harrison, R. M., Pio, C. A., (1983). Size differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmospheric Environment 17:1733-1738.
    Harrison, R.M., Perry, R. (1986). Handbook of air pollution analysis, 2nd Ed. Chapman and Hall, London, New York.
    Harrison, R. M., Msibi, M. I., Kitto, A. M. N., Yamulki, S. (1994). Atmospheric chemical transformations of nitrogen compounds measured in the North Sea Experiment, September 1991. Atmospheric Environment 28:1593-1599.
    He, K.B. , Yang, F.M., Ma, Y.L., Zhang, Q., Yao, X.H., Chan, C.K., Steven, C., Chan, T., Patricia, M. (2001). The characteristics of PM2.5 in Beijing, China. Atmospheric Environment 35: 4959-4970.

    Hegg, D.A., Hobbs, P.V., 1982. Measurement of sulfate production in natural clouds. Atmospheric Environment 16: 2663-2668.
    Heintzenberg, J. (1989). Fine particles in the global troposphere, A review. Tellus 41B: 149-160.
    Hering, S.V., Friedlander, S.K. (1982). Origins of aerosol sulfur size distributions in the Los Angeles basin. Atmospheric Environment 16: 2647-2656.
    Hidy, G.M. (1994). Atmospheric Sulfur and Nitrogen Oxides; Academic Press, San Diego, California, Cited in Foltescu, V.L., Lindgren, E.S., Isakson, J.M., and Oblad, M. (2001). Gas-to-particle conversion of sulpher and nitrogen compounds as studied at marine stations in northern Europe. Atmospheric Environment 30:3129-3140.
    Hu, M., He, L. Y., Zhang, Y. H., Wang, M., Kim, Y. P., Moon, K. C. (2002). Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment 36: 5853-5859.
    Huang, Z.R., Harrison, M.A., Allen, G.J., James, D.J., Tilling, R.M., Yin, J. (2004). Field intercomparison of filter pack and impactor sampling for aerosol nitrate, ammonium, and sulphate at coastal and inland sites, Atmospheric Research 71:215-232.
    Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I. (1998). Physical and chemical characterization of atmospheric ultra-fine particles in the Los Angeles area. Environmental Science and Technology 32:1153-1161.
    Jacobson, M. Z. (1999). Fundamentals of atmospheric modeling, Cambridge University press, New York.
    John, W., Wall, S. M., Ondo, J. L., Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24: 2349-2359.
    Jonson, J. E., Semb, A., Barrett, K., Grini, A., Tarrason, L. (2000). On the distribution of sea salt and sodium nitrate particles in Europe. Transport and chemical transportation in the troposphere, Proceedings of the EUROTRAC Symposium, Sixth, Gaimisch-Partenkirchen, Germany, 27-31 March 2000, 695-699.
    Kadowaki, S. (1976). Size distribution of atmospheric total aerosols, sulfate, ammonium and nitrate particulate in the Nagoya area. Atmospheric Environment 10: 39-43.
    Kadowaki, S. (1986). On the nature of atmospheric oxidation processes of SO2 to sulfate and of NO2 to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban area. Environmental Science and Technology 20: 1249-1253.
    Kang, C.M., Lee, H.S., Kang, B.W., Lee, S.K., Sunwoo, Y. (2004). Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment 38: 4749-4760.
    Kean, A.J., Harley, R.A., Littlejohn, D., Kendall, G.R. (2000). On-road measurement of ammonia and other motor vehicle exhaust emissions. Environmental Science and Technology 34: 3535-3539.
    Kerminen, V. M., Wexler, A. S. (1995). Growth laws for atmospheric aerosol particles: An examination of bimodality of the accumulation mode. Atmospheric Environment 29:3263-3275.
    Kerminen V.M., Hillamo R., Teinilä K., Pakkanen T., Allegrini I., Sparapani R. (2001). Ion balances of size-resolved tropospheric aerosol samples: implications for the acidity and atmospheric processing of aerosols. Atmospheric Environment 35:5255-5265.
    Keywood, M. D., Ayers, G. P., Gras, J. L., Gillett, R. W., Cohen, D. D. (1999). Relationships between size segregated mass concentration data and ultrafine particle number concentrations in urban areas. Atmospheric Environment 33:2907- 2913.
    Khoder, M.I. (1997). Assessment of some air pollutants in Cairo and their role in atmospheric photochemistry. Ph.D. Thesis, Ain Shams University, Egypt.
    Khoder, M.I. (2002). Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49: 675-684.
    Kim, B. G., Park, S. U. (2001). Transport and evolution of a winter-time yellow sand observed in Korea. Atmospheric Environment 35: 3191-3201.
    Liu, S., Hu, M., Slanina, S., He, L.Y., Niu, Y.W., Bruegemann, E., Gnauk, T., Herrmann, H. (2008). Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmospheric Environment 42: 6284-6295.
    Lin, C.Y., Wang, Z., Chou, C.C.K., Chang, C.C., Liu, S.C. (2007). A numerical study of an autumn high ozone episode over southwestern Taiwan. Atmospheric Environment 41:3684-3710.
    Lin, C.H., Wu, Y.L., Lai, C.H., Lin, P.H., Lai, H.C., Lin, P.L. (2004). Experimental investigation of ozone accumulation overnight during a wintertime ozone episode in south Taiwan. Atmospheric Environment 38:4267-4278.
    Lin, J.J. (2002a). Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36: 1911-1920.
    Lin, J.J. (2002b). Characterization of water-soluble ion species in urban ambient particles. Environment International 28: 55-61.
    Lin, Y.C., Cheng, M.T., Ting, W.Y., Yeh, C.R. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of central Taiwan. Atmospheric Environment 40: 4725-4733.

    Lin, Y.C., Cheng, M.T. (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment 41: 1903-1910.
    Matsumoto, K., Tanaka, H. (1996). Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium. Atmospheric Environment 30, 639-648.
    McDade, C., Tombach, I., Hering, S., Kreisberg, N. (2000). Analysis and simulation of wintertime light scattering by the urban aerosol in Dallas-Fort Worth. Journal of the Air and Waste Management Association 50:849-857.
    McCurdy, T., Zelenka, M.P., Lawrence, P.M., Houston, R.M., Burton, R., (1999). Acid aerosols in the Pittsburgh metropolitan area. Atmospheric Environment 33:5133-5145.
    Mehlmann, A., Warneck, P. (1995). Atmospheric gaseous HNO3, particulate nitrate, and aerosol size distributions of major ionic species at a rural site in western Germany. Atmospheric Environment 29: 2359-2373.
    Middleton, P., Kiang, C.S., Mohnen, V.A. (1980). Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment 14: 463-472.
    Nair, S.K., Peters, L.K. (1989). Studies on non-precipitating cumulus cloud acidification. Atmospheric Environment 23: 1399-1423.
    Odum, J.R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.C., Seinfeld, J.H. (1996). Gas/particle partitioning and secondary organic aerosol yields. Environmental Science and Technology 30: 2580 -2585.
    Ohta, S., Okita, T. (1990). A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment 24A: 815-822.
    Pakkanen, T. A. (1996). Study of formation of coarse particle nitrate aerosol. Atmospheric Environment 30:2475-2482.
    Pakkanen, T.A., Kerminen, V-M, Korhonen, C.H., Hillamo, R.E., Aarnio, P., Koakentalo, T., Maenhaut, W. (2001). Urban and rual ultrafine (PM0.1) particle in the Helsinki area. Atmospheric Environment 35:4593-4607.
    Pandis, S. N., Harley, R. H., Cass, G. R., Seinfeld, J. H. (1992). Secondary organic aerosol formation and transport. Atmospheric Environment 26A: 2269-2282.
    Pandis, S.N., Seinfeld, J.H. (1989). Sensitivity analysis of a chemical mechanism for aqueous-phase atmospheric chemistry. Journal of Geophysical Research - Atmospheres 94:1105-1126.
    Parmar, R. S., Satsangi, G. S., Kumari, M., Lakhani, A., Srivastava, S. S., Prakash, S. (2001). Study of size distribution of atmospheric aerosol at Agra. Atmospheric Environment 35: 693-702.
    Penkett, S.A. (1972). Oxidation of SO2 and other atmospheric gases by ozone in aqueous solution. Nature (London) 240:105-106.
    Perrino, C., Catrambone, M., DiMenno, A., Allegrini, I. (2002). Gaseous ammonia in the urban area of Rome and its relationship with traffic emissions. Atmospheric Environment 36:5385-5394.
    Philinis, C., Seinfeld, J.H. (1988). Development and evaluation of an eulerian photochemical gas aerosol model. Atmospheric Environment 22: 1985-2001.
    Plessow, K., Spindler, G., Zimmermann, F., Matschullat, J. (2005). Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany. Atmospheric Environment 39: 6995-7007.
    Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., Massague, G., Puig, O. (2001). PM10 and PM2.5 source apportionment in the Barcelona metropolitan area, Catalonia, Spain. Atmospheric Environment 35: 6407-6419.
    Rebours, A., Boulaud, D., Renoux, A. (1996). Recent advances in nanoparticle size measurement with particle growth system combined with an optical particle counter- a feasibility study. Journal of Aerosol Science 27:1227-1241.
    Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G. (2002). Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36: 1661-1674.
    Roberts, P.T., Friedlander, S.K. (1976). Photochemical aerosol formation SO2, 1-heptene, and NOx in ambient air. Science of the Total Environment 10: 573-580.
    Russell, A.G., Cass, G.R., Seinfeld, J.H. (1986). On some aspects of nighttime atmospheric chemistry. Environmental Science and Technology 20: 1167-1172.
    Sakugawa, H., Kaplan, I.R. (1989). H2O2 and O3 in the atmosphere of Los Angeles and its vicinity: Factors controlling their formation and their role as oxidants of SO2. Journal of Geophysical Research 94: 12957-12974.
    Sakugawa, H., Kaplan, I.R., Tsai, W., Cohen, Y. (1990). Atmospheric hydrogen peroxide: Does it share a role with ozone in degrading air quality. Environmental Science and Technology 24: 1452-1462.
    Sakurai, T., Fujita, S.I., Hayami, H., Furuhashi, N. (2003). A case study of high ammonia concentration in the nighttime by means of modeling analysis in the Kanto region of Japan. Atmospheric Environment 37: 4461-4465.
    Sander, S.P., Seinfeld, J.H. (1976). Chemical Kinetics of Homogeneous Atmospheric Oxidation of Sulfur Dioxide. Environmental Science and Technology 10: 1114-1123.
    Schwartz, S.E., Freiberg, J.E. (2007). Mass-transport limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2 in aqueous solutions. Atmospheric Environment 41: S138-S153.
    Seigneur, C., Saxena, P. (1988). A theoretical investigation of sulfate formation in clouds. Atmospheric Environment 22: 101-115.
    Seinfild J.G. (1986). Atmosphere chemistry and physics of air pollution. Wiley, New York.
    Seinfeld, J.H., Pandis, S.N. (1998). Atmospheric chemistry and physics: from air pollution to global change. John Wiley & Sons, New York.
    Shrestha, A.B., Wake, C.P., Dibb, J.E., Whitlow, S.I. (2002). Aerosol and precipitation chemistry at a remote Himalayan site in Nepal. Aerosol Science and Technology 36: 441-456.
    Sickles II, J.E. (1999). A summary of airborne concentrations of sulfur- and nitrogen-containing pollutants in the northeastern United States. Journal of the Air and Waste Management Association 49:882-893.
    Stelson, A.W., Seinfeld, J.H. (1982). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 16: 983-992.
    Tsai, J.H., Chang, K.L., Lin, J.J., Lin, Y.H., Chiang, H.L. (2005). Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air and Waste Management Association 55: 502-509.
    Tsai, Y.I., Cheng, M.T. (1999). Visibility and aerosol chemical compositions near the coastal area in central Taiwan. The Science of the Total Environment 231: 37-51.
    Tsai, Y.I., Cheng, M.T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54: 1171-1181.
    Tsai, Y.I. Chen, C.L. (2006). Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan. Atmospheric Environment 40: 4751-4763.
    Tsai, Y.I., Kuo, S.C. (2005). PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39: 4827-4839.
    USEPA/600/P-95/001aF Air Quality Criteria for Particular Matter V1 April (1996).
    Wakamatsu, S., Utsunomiya, A., Han, J. S., Mori, A., Uno, I., Uehara, K. (1996). Seasonal variation in atmospheric aerosols concentration covering northern Kyushu, Japan and Seoul, Korea. Atmospheric Environment 30: 2343-2354.
    Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W. (2004). Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38: 1235-1246.
    Walker, J.T., Robarge, W.P., Shendrikar, A., Kimball, H. (2006). Inorganic PM2.5 at a U.S. agricultural site. Environmental Pollution 139: 258-271.
    Wall, S.M., John, W., Ondo, J.L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22: 1649-1656.
    Whitby, K.T., Cantrell, B. (1976). International Conference on Environmental Sensing and Assessment, Las Vegas, Nev. United States Atmospheric aerosols-Characteristics and measurement: 1 29-1 to 6 29-1.
    Whitby, K. T., Cantrell, B. K. (1976). Atmospheric aerosols characteristics and measurement. In: International Conference on Environmental Sensing and Assessment (ICESA), Institute of Electrical and Electronic Engineers (IEEE), ICESA, Las Vegas, NV, 1-6.
    Wilson, T.R. (1975). Salinity and the major elements of sea-water. In: Chemical Oceanography (eds. Riley, J.P., Skirrow, G.). Academic Press, San Diego, CA, 365-413.
    Wolff, G.T., Monson, P.R., Ferman, M.A. (1979). On the nature of the diurnal variation of sulfates at rural sites in the eastern United States. Environmental Science and Technology 13:1271-1276.
    Wolff, G.T. (1984). On the nature of nitrate in coarse continental aerosols. Atmospheric Environment 18: 977-981.
    Yao, X., Lau, A.P.S., Fang, M., Chan, C.K., Hu, M. (2003). The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment 37: 743-751.
    Ye, B., Ji, X., Yang, H., Yao, X., Chan, C.K., Cadle, S., Chan, T., Mulawa, P. (2003). Concentration and chemical composition of PM2.5 in Shanghai for a 1 yr period. Atmospheric Environment 37: 499-510.
    Yoshizumi, K., Hoshi, A. (1985). Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols. Environmental Science and Technology 19: 258-261.
    Zhang, D., Shi, G., Iwasaka, Y., Hu, M. (2000). Mixture of sulfate and nitrate in coastal atmospheric aerosols: individual particle studies in Qingdao (36°04’N, 120°21’E), China. Atmospheric Environment 34: 2669-2679.
    Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33: 843-853.
    王弼正,李崇德,陳鏡廉,「大台北地區PM2.5細粒氣膠污染來源推估」,第十四屆空氣污染研討會,第402-407頁(1997)。
    江宜展,「以熱力學模式應用於超級測站硝酸氣體推估」, 國立成功大學環境工程學系碩士班(2006)。
    李崇德,許文昌,簡宏倫,謝康,「台灣北部都會區氣懸微粒污染特性及其污染來源推估」,第十二屆空氣污染研討會,第427-433頁(1995)。
    林銳敏,黃建達,林宗毅,「不同空氣品質測站粗細微粒碳成份分佈分析」,氣懸膠研討會(1999)。
    林建宏,「大氣懸浮微粒濃度及化學組成與氣象因子變異關聯性研究」,國立成功大學環境工程研究所碩士論文,台南(2008)。
    吳義林,許立勳,「台南縣大氣懸浮微粒組成與來源」,第十五屆空氣污染研討會,第763-767頁(1998)。
    吳義林,許德仁,「空氣品質代表性評估(中南部)」,行政院環保署報告(1998)。
    吳義林,「空氣品質地區別與時空特性分析—中南部」,行政院環保署報告(1999)。
    袁中新,袁景嵩,張瑞正,袁菁,張章堂,「台灣南部地區PM2.5及PM10之時空分佈趨勢探討」,第十五屆空氣污染控制技術研討會,第694-702頁(1998)。
    袁中新,洪崇軒,王宏恩,劉山豪,「台灣地區懸浮微粒物化特徵及生成機制探討」,氣膠研討會論文集,第253-261頁(1999)。
    許文昌,李崇德,「台北都會區氣懸微粒污染來源的推估」,第九屆空氣污染研討會,第189-202頁(1992)。
    張凱倫,「大氣奈米微粒無機鹽類組成特性研究」,國立成功大學環境工程研究所碩士論文,台南(2004)。
    郭奕伶,吳義林,「高屏地區衍生性硝酸鹽與硫酸鹽之形成速率」,第十三屆空氣污染控制技術研討會,第81-88頁(1996)。
    陳冠志,「南高屏地區PM10懸浮微粒污染來源之探討」,國立成功大學環境工程研究所碩士論文,台南(1998)。
    陳德鈞,季延安,林肇信,「大氣污染化學」,科技圖書股份有限公司,台北市,第62-84頁(1993)。
    陳親瑩,「前驅氣體對大氣細微粒濃度變化影響之研究」, 國立高雄第一科技大學環境與安全衛生工程所碩士論文,高雄(2007)。
    楊宏隆,「大氣懸浮微粒PM2.5及PM10之特性及來源分析」,國立中興大學環境工程研究所碩士論文,台中(1998)。
    廖哲甫,「空氣污染事件日次微米微粒水溶性離子組成及氣相前驅物之研究」,國立成功大學環境工程研究所碩士論文,台南(2006)。

    蔡德明,吳義林,「高屏低區大寮測站PM10及PM2.5之組成份特徵研究」,氣膠研討會,第339-346頁(1998)。
    蔡瀛逸,鄭曼婷,「高污染狀態下大氣二次氣膠組成之探討」,第十五屆空氣污染控制技術研討會,第711-718頁(1998)
    蔡瀛逸,「台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究」,國立中興大學環境工程學系博士論文,台中(1999)。
    蔡俊鴻,林銳敏,江鴻龍,張凱倫,林允涵,「大氣奈米微粒化學組成特性與氣相前驅物質關連性之研究」,第十屆氣膠科技科技研討會(2000)。

    下載圖示 校內:立即公開
    校外:2009-07-28公開
    QR CODE