簡易檢索 / 詳目顯示

研究生: 張坤裕
Chang, Kun-yu
論文名稱: 焚化灰渣及廢水污泥高溫熱熔之研究
Vitrification of Incineration Ashes and Wastewater Sludge
指導教授: 李文智
Lee, Wen-Jhy
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 高溫熱熔灰渣污泥重金屬金屬錠熔渣
外文關鍵詞: Slag, Heavy metals, Sludge, Ashes, Vitrification, Ingot
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要係將焚化灰渣及廢水污泥,以高溫熱熔法進行實驗,以模擬電漿熔融系統之部分操作條件,了解重金屬元素於高溫熱熔程序中之宿命。再者,添加不同比例廢玻璃作為添加劑,與灰渣及污泥調質後,進行實驗室熱熔試驗,探討不同添加物比例對熱熔處理效果之影響。研究結果顯示,實廠電漿熔融系統與實驗室熱熔試驗模擬結果類似,出料物質中大多數金屬元素,如:Ag(67.9%)、As(83.3%)、Ca(77.4%)、Cr(63.6%)、Mg(50.8%)、Mn(78.0%)、Mo(80.5%)及Na(53.3%)等存在於熔渣中,主要存在於金屬錠者,為Cu(75.3%)與Ni(61.3%),而揮發至煙道廢氣中者,以粒狀物相存在之金屬元素主要為Cd (97.0%)、Hg(40.0%)、K(92.9%)及Se(54.2%),而金屬元素主要存在於氣相者為Pb(81.6%)。由此可見主要控制金屬元素宿命之因子,為金屬元素之比重與沸點。分離效率試驗結果顯示,當熱熔試驗進料中,廢玻璃之比例為30% (T30)時,Co、Cr、Fe及Ni等金屬元素於金屬錠中有最高之回收分離效率,然而,Cu於T70及Mn於T60有最高之回收分離效率。當廢玻璃添加量過多,將形成立體狀之玻璃網絡,增加熔渣黏滯性,妨礙比重大之金屬元素下沉,因此,部分金屬元素於金屬錠中之回收分離效率因而降低。以高溫熱熔法處理焚化灰渣及廢水污泥,可達到廢棄物減量化、穩定化及資源化之目的。

    This study focus on the vitrification of waste incineration ashes and wastewater sludge in the operational conditions of plasma system, and aims to understand the fate of heavy metals in vitrification processes. Furthermore, different addition fraction of cullet in ashes and sludge is used to investigate the effect of vitrification treatment when adding various addition ratios. The results showed that the vitrification behaviors of plasma system is similar to that in-laboratory by using high temperature electrode furnance. The majority of elements were existed in slag of out-put materials such as Ag(67.9%)、As(83.3%)、Ca(77.4%)、Cr(63.6%)、Mg(50.8%)、Mn(78.0%)、Mo(80.5%) and Na(53.3%). However, both Cu (75.3%) and Ni (61.3%) were mainly in the ingot; Cd (97.0%), Hg(40.0%), K(92.9%) and Se(54.2%) were primarily in the particulate of stack gas and Pb(81.6%) were mostly associated with gas phase. This result shows the dominant factors for controlling the fate of metal elements are their specific weight and boiling point. Separation-efficiency tests showed that Co, Cr, Fe, and Ni are with the best separation rate when cullet addition fraction is 30% (T30); however, that of Cu is T70 and Mn is T60. This result shows that adding too much cullet forms stereo glassy-network, increasing viscosity of slag which obstructs setlling properties and decrease separation efficiency of metal elements in ingot. Vitrifaction of both incineration ashes and wastewater sludge can achieve the goals of waste volume reduction, stabilization and recycling.

    摘 要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 X 第一章 前 言 1 第二章 文獻回顧 3 2-1 焚化灰渣種類及來源 3 2-2 焚化灰渣特性分析 4 2-2-1 焚化灰渣物理特性(physical characteristics) 4 2-2-2 焚化灰渣化學特性(chemical characteristics) 6 2-3 廢棄物焚化灰渣之處理及處置方法 8 2-3-1資源化再利用 9 2-4 重金屬污泥來源及其處理處置 15 2-4-1 重金屬污泥來源及性質 15 2-4-2 重金屬污泥處理處置現況及其問題點 15 2-5 金屬元素之危害性 19 2-6 焚化過程重金屬之生成機制 21 2-7 高溫熱熔法 26 2-7-1 原理簡介 26 2-7-2 熱熔處理效應及特色 28 2-7-3 玻璃化介紹 28 2-7-4 熱熔融後熔渣種類及特性 34 第三章 研究設備與方法 38 3-1 研究流程與架構 38 3-2 研究設備與操作參數 41 3-2-1 電漿熔融系統 41 3-2-2 電氣式熱熔爐 43 3-3實驗方法與樣本製備 48 3-3-1 電漿熔融系統實廠採樣 48 3-3-2 實驗室模擬熱熔試驗之實驗流程 48 3-3-3 分離效率試驗之實驗流程 50 3-3-4 消化處理 50 3-3-6 毒性溶出試驗(TCLP) 53 3-3-7 微結構觀察 56 3-3-9 實驗分析儀器 57 第四章 結果與討論 58 4-1 電漿熔融系統採樣結果 58 4-1-1 進料物質成分 58 4-1-2 入料中重金屬比例之分析 61 4-1-3 出料物質成分 63 4-1-4 實廠重金屬宿命分析 63 4-2 電漿熔融系統進料與產品特性鑑定 67 4-2-1 毒性溶出試驗(TCLP) 67 4-2-2 進料與產品物質微結構分析 69 4-3 實驗室模擬熱熔試驗 71 4-3-1 模擬熱熔試驗入料物質分析 71 4-3-2 模擬熱熔試驗出料物質分析 71 4-3-3 模擬熱熔試驗金屬宿命分析 71 4-4 分離效率試驗 75 4-4-1 分離效率試驗入料物質分析 75 4-4-2 分離效率試驗出料物質分析 77 4-4-3 模擬熱熔試驗分離效率分析 84 4-4-4 實廠熔融系統與實驗室熱熔試驗之重金屬宿命比較 91 4-4-5 毒性特性溶出試驗(TCLP) 93 第五章 結論與建議 95 5-1 結論 95 5-2 建議 98 參考文獻 99

    Abe, S., Funmiaki, K., Masaharu, O., “Ash melting treatment by rotating type surface melting furnace”, Waste Management, Vol. 16, pp. 431-443, 1996.
    Anthony, T. C. and Tay, J. H., “Municipal solid waste incinerator fly ash for geotechnical applications”, Journal of Geotechnical Engineering - ASCE, Vol. 119, No. 5, pp. 811-825, 1993.
    Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D.. A review of potentially low-cost sorbents for heavy metals. Water Research 33(11), pp 2469-2479, 1999.
    Barbieri, L., Bonamartini, A. C., Lancellotti, I., “Alkaline and alkaline-earth silicate glass and glass-ceramics from municipal and industrial wastes”, Journal of the European Ceramics Society, Vol. 20, pp. 2477-2483, 2000.
    Bryson, A.W., Dardis, K.A., 1980. Treatment of dilute metal effluents in an electrolytic precipitator. Water SA 6(1), pp 85-87
    Chandler, A.J., T.T. Eighmy, J. Hartlen, O. Hjelmar, D.S. Kosson, S.E. Sawell, H.A. van der Sloot, and J. Vehlow, “Municipal solid waste incinerator residues”, Studies in Environmental Science 67, The International Ash Working Group, Elsevier, Science B.V., New York, 1997.
    Ecke, H., Sakanakuras, H., Matsuto, T., Tanaka, N., Lagerkvist, A., “Effect of Electric arc vitrification of bottom ash on the mobility and fate on metals”, Environmental Science and Technology, Vol. 35, pp. 1531-1536, 2001.
    EER, “Updated Guidance on Metals Interpolation and Extrapolation for Hazardous Waste Combustors”, Draft Report. Prepared for EPA Office of Solid, 1996a.
    EER, “Updated Guidance on Metals Surrogates for Hazardous Waste Combustors”, Draft Report. Prepared for EPA Office of Solid, 1996b.
    Endo, H., Nagayoshi, Y., Suzuki, K., “Production of glass ceramics from sewage sludge”, Water Science and Technology, Vol. 36, pp. 235-241, 1997.
    Fujimoto, T., Tanaka, E., “Melting treatment for incinerated residue of municipal waste”, Proceeding from the Pacific Basin conference on Hazardous Waste. Singapore: Pacific Basin Consortium for Hazardous Waste Research, 1989.
    German, R. M., “Sintering theory and practice”, John Wiley & Sons, New York, pp.1-2, 1996.
    Guangren Qian, Yali Cao, Pengcheong Chui, Joohwa Tay, “Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge”, Journal of Hazardous Materials, Vol. B129, pp. 274-281, 2006.
    Hjelmar, O., “Stofudvaskning fra flyveaske fra affaldsforbraendingsan-laeg”, Rapport til Miljostyrelsen, VKI, Horsholm, Denmark, 1993.
    Iawg, “Municipal Solid Waste Incinerator Residues”, Elsevie, 1997.
    I.B. Singh, K. Chaturvedi, R.K. Morchhale, A.H. Yegneswaran, “Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay”, Journal of Hazardous Materials, Vol. 141, pp. 215-222, 2007
    Jones G.O. “Glass”, rev Parke S., Chapman & Hall, London, 1971.
    Koichiro, K., “Ash Melting System and Reuse of Produce by Arc Processing”, Waste Management, Vol. 16, pp. 423-430, 1996.
    Lide, D., “ CRC Handbook of Chemistry and Physics ” , 75th Ed. CRC Press, 1995.
    Luisa, B., Anna, C., Isabella, L., “Alkaline and Alkaline-Earth Silicate Glass and Glass-Ceramics from Municipal and Industrial Wastes”, Journal of European Ceramic Society, Vol. 20, pp. 2477-2483, 2000.
    Mathews, A. P., “Chemical Equilibrium Analysis of Lead and Berylium Speciation in Hazardous Waste Incinerators Proceedings of the Second International Symposium on Metals Speciation”, Seperation and Recovery, Vol. 2, pp. 63-83, 1989.
    Ontiveros, J.T., Clapp T.L. and Kosson, D.S., “Physical Properties and Chemical Species Distributions Within Municipal Waste Combuster Ashes”, Environmental Progress, Vol. 8, No. 3, pp.200, 1989.
    Paasivirta, J., “Chemical Ecotoxicology”, Lewis Publishers, Inc., 1991.
    Patterson, J.W., 1981. Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc. Proceeding 36th Annual Industrial Waste Conference, Purdue University, pp 579- 602. Purdue University, West Lafayette, Indiana.
    P. Kavouras, G. kaimakamis, Th. A. Ioannidis, Th. Kehagias, Ph. Komninou, S. Kokkou, E. Pavlidou, I. Antonopoulos, M. Sofoniou, A. Zouboulis, C.P. Hadjiantoniou, G. Nouet, A. Parkouras, Th. Karakostas, “Vitrification of lead rich solid ashes from incineration of hazardous industrial wastes”, Waste Management, Vol. 23, pp. 361-371, 2003.
    Rosenfield, I., Ziff, E., Van Loon, B., “DNA for Beginners, Writers and Readers Publishing Co.”, ISBN 0 86316 023 9, 1983.
    Stuart, B.J., “Characterization of municipal waste combustion air pollution control residues as a function of particle size”, M. Sc. Thesis, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 1993.
    Vogel, W., “Glass Chemistry”, Springer-Verlag, New York, 1992.
    Wiles, C. C., “Municipal Solid Waste Combustion Ash: State-of-the-knowledge”, Journal of Hazardous Materials, Vol. 47, pp.325-344, 1996.
    Wunsch P., Greilinger C., Bienick D. and Kettrup A. “Investingation of the Binding of Heavy Metals in Thermally Treated Residues From Waste Incineration”, Chemosphere, Vol. 32, No. 11, pp.2211, 1996.
    王振乾、張家源、米孝萱、陳啟榮、陳薇色、黃婉如、陳珮蓮,“螫合基側鏈對弱酸型樹魯去除重金屬的影響”,第十四屆廢水處理技術研討會,1999。
    王鯤生、江康鈺、葉宗智、林仕敏,“都市垃圾焚化灰渣重金屬濃度及TCLP溶出之評估”,第十一屆廢棄物處理技術研討會, pp. 68-76,高雄,1996。
    行政院環境保護署,http://www.epa.gov.tw/,2009
    行政院環境保護署,污泥及沉積物中重金屬檢測方法-酸消化法,NIEA R353.00C,2002
    行政院環境保護署,事業廢棄物毒性特性溶出程序,NIEA R201.13C,2003
    行政院環境保護署環境檢驗所,感應耦合電漿質譜儀法NIEA M105.00B,2004。
    行政院環境保護署,排放管道中重金屬檢測方法,NIEA A302.73C,2006
    行政院環境保護署環境檢驗所,水中陰離子檢測方法-離子層析法NIEA W415.52B,2005。
    江康鈺、王鯤生,“污泥熔融處理及資源再利用技術”,工業污染防治,Vol. 64,pp. 156-188,1997。
    李釗, 江少鋒, 郭文田, “都市垃圾焚化灰渣做為混凝土細骨材之可行性研究”, 一般廢棄物焚化灰渣資源化技術與實務研討會, pp.91-112, 1996。
    宋威岳,“石化產業廢料及模擬放射性廢料電漿玻璃化處理技術之研究”,碩士論文,國立台灣海洋大學材料工程研究所,1999。
    吳裕民, 楊金鐘, “垃圾焚化飛渣穩定化產物再利用之可行性探討”, 一般廢棄物焚化灰渣資源化技術與實務研討會論文集, 行政院環保署, pp.43-57, 1996。
    林國旋, “重金屬於焚化爐中之動態評估”, 技術與訓練, Vol. 17, No. 2, pp.44-58, 1992。
    張旭彰,“都市垃圾焚化灰渣熔融處理操作特性之研究”,碩士論文,國立中央大學環境工程研究所,1992。
    張旭彰,“灰渣熔融處理法的理論與實務”,工業污染防治,第十二卷, 第四期,pp. 95-112,1993。
    林鴻祺, 江東法, 廖明村, “一般廢棄物焚化灰渣處理處置及再利用技術探討”, 一般廢棄物焚化灰渣資源化技術與實務研討會, pp.69-90, 台北市, 1996。
    金承漢,“以高溫熱熔法處理廢鹼性電池之研究”,碩士論文,國立成功大學環境工程學系,2008。
    邱太銘,“電漿焚化熔融技術於廢棄物處理之應用”,核研季刊,Vol. 27,pp. 23-34,1998。
    張乃斌, “垃圾焚化廠-系統工程規劃與設計”, 新雅出版社,高雄市, pp.16-1~16-59, 1997。
    張祖恩, 魏玉麟, 王鴻博, 許琦, 黃沐域, “焚化灰渣物化特性及其溶出毒性之調查研究”, 第十四屆廢棄物處理技術研討會論文集, 中華民國環境工程學會, pp.6-20~6-23, 1999。
    張君偉, “水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響”, 碩士論文, 國立中央大學環境工程研究所, 2000。
    陳政澤、賴重光、黃嘉宏、蔡啟明、張贊淵、黃家銘、曾善訓、黃姚玲、鄧瑞琴。國內有害污泥現況分析與可行處理方式評估,第十六屆廢棄物處理技術研討會,2001。
    郭益銘,“焚化灰渣玻璃化之評估研究”,博士論文,國立成功大學環境環境工程系碩士論文,2002。
    張祖恩、蔣立中、盧幸成、施百鴻、張益國。重金屬污泥作為水泥替代原料可行性研究,第十八屆廢棄物處理技術研討會,2003。
    巢志成、陳明德、王鑑恒。污泥之焚化處理技術,工業污染防治,64卷,138-155,1997
    黃奕叡,“廢棄物焚化灰渣熱熔之研究”,碩士論文,國立成功大學環境工程學系,2002。
    傅聖峰,“以熱熔法處理電鍍污泥之研究”,碩士論文,國立成功大學環境工程學系,2004。
    詹炯淵,“垃圾焚化飛灰管理對策之研究”,碩士論文,國立台灣大學環境工程學研究所,2001。
    廖明村, 張豐藤, “垃圾焚化灰渣處理處置及資源化技術探討”, 中興工程, 第60期, pp.125-136, 1998。
    樊邦堂,“環境工程化學”,科技圖書股份有限公司,pp. 311-318,1994。
    顧順榮, 鐘昀泰, 張木彬, “台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP溶出之評估”, 第十屆廢棄物技術研討會論文集, pp.271-279, 1995。

    下載圖示 校內:2011-07-07公開
    校外:2011-07-07公開
    QR CODE