| 研究生: |
陳建中 Chen, Jian-Chun |
|---|---|
| 論文名稱: |
光晶高曲度波導系統之研發應用 Development of Photonic-Crystal Films for High-Curvature Wave-Guides Systems |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 實驗設計 、DLVO理論 、薄膜沉積 、光晶薄膜 |
| 外文關鍵詞: | DLVO theory, film assembly, photonic films, experimental design |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前光訊號傳輸主要仍採用光纖之原理,故而光訊號傳遞有所限制,雖經放大,效率仍然不佳。且光纖原理是靠核心與殼層的折射率不同而產生全反射,但在轉角彎曲處,由於部分入射光訊號會不滿足全反射條件而造成強度的衰減,因此光訊號在彎角能量的耗損問題已成為現今光學研究的重要研究課題之一。光子晶體是泛指所有具有光子能隙的材料,因此在製備上並無尺度上的考量。在奈米科技蓬勃發展的現代,學者們將奈米技術與光子晶體作理論結合,以期大幅減少光通道體積,進而增加積體光學單位面積之通道數,以提升光通訊效率。
本研究亦採用奈米技術、光晶波導理論及其傳遞效率之模型,但是以往光波導模型在模擬推估傳遞效率時並未考慮製程參數,模擬的條件與實際情況不相符合,因此本研究將由薄膜沉積製程參數著手,目的在建構一套完整光晶薄膜成形理論與光波導傳遞效率估算模型,以針對光晶薄膜沉積參數對光波導傳遞效率的影響作一系列的探討與研究。在建構薄膜沉積理論的過程中發現到以往薄膜沉積理論在探討表面能對薄膜沉積結構所產生的影響並不完備,因此本文在製程參數中加入表面能參數並加以調控,希望能藉由完整考慮表面能作用對薄膜沉積結構進行更加準確的預測。在進行參數調控分析時,由於之前文獻對因子間交互作用分析理論探討甚少,因此本文採用實驗設計方法對因子與因子間交互作用項進行分析,藉以達成更貼近薄膜沉積實際結構之預測。
首先,須先確定本研究實驗對象尺度為次微米,接著探討次微米粒子在膠體溶液中所受的作用力,將之疊加後以verlet演算法進行疊代運算,計算各個時間步階下的位置與系統參數,直到系統穩定後利用IOF法則計算薄膜的結構。求得薄膜結構後,便可將此參數搭配粒子的介電常數與粒徑,進行平面波展開法求得光晶薄膜結構的能隙頻譜。將光晶波導的波源頻率設定於光晶薄膜結構的能隙中,再利用有限時域差分法進行光晶波導的電磁波模擬,以計算光晶波導的傳遞效率,並將本文模擬結果與文獻實驗值比對,證實本研究所建構之理論模型的正確性。使用實驗設計方法找出顯著參數因子並調控顯著參數因子理論模型進行模擬計算,並根據本文建構的實驗設計流程調控顯著因子,進而提升光波導的傳遞效率。
由本研究所建構之光晶薄膜沉積模型,在模擬中考量粒徑、Hamaker常數、表面電位外,並加入表面能的影響,經由實驗設計方法建立參數調控表,並利用變異數分析找出顯著參數與顯著交互作用項,針對這些顯著因子做模擬試驗,減少調控不顯著因子的實驗次數。本文研究結果與文獻資料比對後,發現所提理論可將薄膜缺陷誤差由傳統理論預估的10%~20%減少到10%以下,高曲度光晶波導最高傳遞效率可達75.83%,並經由實例應用以證實本文所建構的系統可因不同實際情況而找出最佳光晶波導傳遞效率的薄膜製程參數範圍。本文最後提出整合完成一套完整設計流程。此流程將可提供業界在光晶及光波導在實做上之設計及測試應用。
Traditionally, the optic signal transmission is mainly based on the optic fiber system. The efficiency is still feckless because of the limit of optic signal transport, even after the signals are amplified. The theorem of optic fiber system is dependent on the total reflection of different refraction indices between core element and shell element. However, the strength of optic signals will decrease at the curve because of a part of optic signals can not fit the condition of total reflection. Therefore, the transfer energy is decreased for optic signals at the curve become one of the major topics in modern optical research. The photon crystal describes the materials with the property of photon energy gap, and researchers try to decrease the volume of optic-channel through the employment of nanotechnology and the photonic crystals to increase the efficiency of optic transport.
The research also uses the model of nanotechnology, photonic wave-guide, and related transport efficiency. However, in traditional approach the optic wave guide theory doesn’t consider the parameters for the film assembly. Thus, the conditions of simulation weren’t completely with the reality. This research will start from the film assembly parameters in order to build a relatively complete photonic self-assembly film theory and an optic transport efficiency computation model for photonic wave guilds. Aiming at the series of the effect of film assembly parameters to the photonic wave-guide’s transport efficiency, the film assembly model is first built. We notice that traditional film assembly theory wasn’t perfect in describing the effect of surface energy to assemble film structure, so this research has added one key component of surface energy into the film assembly film parameters, then we make a much precise forecast with the assembly film structure. When adjusting the parameter, because the previous literatures discussed unclearly of the interactions between two parameters, this research attempts to get a more precise forecast of film structure by using experimental design method on characterizing the interactions of parameters.
The scale of this model is sub-micrometer. We consider the forces interacting among the sub-micrometer particles in gel solution due to the colloid. We sum up those forces and then using verlet integration method to solve the sub-micrometer particles’ positions and system parameters in each time step. Once the system becomes stable, by employing IOF method, we compute the film structure. Also, utilizing the film structure, dielectric constant, and the diameter of particles, we obtain the band gap of this photonic film structure by plane wave expansion method. The efficiency of the photonic wave guide can then be calculated by using finite-difference-time-domain method. We also compare the experiment results with our simulation to enhance the transport efficiency of the photonic wave guide.
The photonic assembly films model which is built from this research contains several parameters such as particle diameter, Hamaker constant, surface potential, and the effect from surface energy. We build a table of key influential factors by experiments design method and analyze the variances to find the optimum of each parameter. Basically, this research is constructed to adjust some common factors based on optimizing the parameters and reducing the simulation times. The results imply that the method reduces the error by 10% as compared to those of the classical method. After comparing with reference data, we confirm that the system that is built by our method achieves the best optical wave guide efficiency for the film assembly parameters in different real world applications. Consequently, this research provides a feasible design process which can be used to provide a better design and application to photonic crystal and optical wave guides for industries in real world operation.
1. Akihiko Shinya, Masaya Notomi, Itaru Yokohama, Chiharu
Takahashi, Jun-Ichi Takahashi and Toshiaki Tamamura, 2002,
“Two-Dimensional Si Photonic Crystals on Oxide Using SOI
Substrate,” Optical and Quantum Electronics, 34, 113–121.
2. Ansell, G.C., and Eric Dickinson, 1986, “Sediment Format by
Browian Dynamics Simulation: Effect of Colloidal and
Hydrodynamics Interactions on The Sediment Structure” Journal of
Chemical Physics, 85(7), pp.4079-4086.
3. Carlos, B.W. Garcia, Yuanming Zhang, Surbhi Mahajan, Francis
DiSalvo, and Ulrich Wiesner, 2003, “Self-Assembly Approach
toward Magnetic Silica-Type Nanoparticles of Different Shapes from
Reverse Block Copolymer Mesophases,” Journal of the American
Chemical Society, 125, 13310-13311.
4. Chatterji, A., Horbach, J., 2006, “Electrophoretic Properties of
Charged Colloidal Suspensions: Application of a Hybrid MD/LB
Method,” Mathematics and Computers in Simulation, 72, pp.98–102.
5. Collardey, S., Poislane, G., Tarot, A. C., Ph. Pouliguen, Mahdjoubi, K.,
and Terret, C., 2000. “Propagation Modes in K-space and Radiation
Pattern of Metallic Photonic Bandgap Materials (MPBG),” Proc.
ISAP , Fukuoka, Japan, pp.783–786.
6. Curtis, D., 1985, "Frequency Domain Microwave Beamforming
Technique, " Microwave Journal, pp.121-131, April.
7. Daan Frenkel, 2002, “UUnderstanding Molecular Simulation : from
Algorithms to ApplicationsU,” Academic Press.
141
8. Derjaguin, B.V., and Landau, L., 1941, “Acta Physicochim,” URSS,
Vol. 44, pp.633-639
9. Ermak, D.L. and Buckholz, H., 1979, “Numerical Integration of the
Langevin Equation: Monte Carlo Simulation,” TJournal of
Computational PhysicsT, 35, pp.169–82.
10. Feke, D.L., Prabhu, N.D., and Mann, J.A., 2001, “A Formulation of
the Short-range Repulsion between Spherical Colloidal Particles,”
The Journal of Physical Chemistry, Vol. 88, pp. 5735-5739.
11. Golla, K.P., Collins, L., Schneider, S, and Terzuoli, A.J., 2001,
"Broadband Application of High Impedance Groundplanes,"
Proceedings of the IEEE Antennas and Propagation Society
International Symposium, Boston, MA, pp.75.
12. Gonzalo, R., De Maagt, P., Sorolla, M, 1999,” TEnhanced
Patch-antenna Performance by Suppressing Surface Waves Using
Photonic-bandgap Substrates,T” Microwave Theory and Techniques,
Volume 47, H0HIssue 11H, pp.2131–2138.
13. Gray, J.J., and Bonnecaze, R.T., 2001, “Adsorption of Colloidal
Particles by Brownian Dynamics Simulation: Kinetics and Surface
Structures” Journal of chemical physics, Vol. 114, No.3, pp.1366-81.
14. Hong, C.W., 1990, “New Concept for Simulating Particle Packing in
Colloidal Forming Process,” J. Am. Ceram. Cod., 73, pp.1117-1135.
15. Hong, C.W., 1998, “From Long-Range Interaction to Solid-Body
Contact Between Colloidal Surfaces During Forming,” J. Eur. Ceram.
Soc., 18, pp.2159–2167.
16. Hunsperger, R.G., 2002, “Integrated Optics: Theory and
Technology,” 5P
th
Ped, Sect. 6.3.
142
17. Ives, K.J. and Gregory, J., 1996, ”Surface Forces in Filtration,” Proc.
Soc. Water Treatment Examination, 15, pp.93-116.
18. Johnson, K.L., Kendall, K. and Roberts, A.D., 1971, Surface energy
and the contact of elastic solids. Proc. R. Soc. Lond. A., 324,
pp.301-313.
19. Juillerat, F., Bowen, P. and Hofmann, H., 2006, “Formation and
Drying of Colloidal Crystals Using Nanosized Silica Particles,”
Langmuir, 22, pp.2249-2257.
20. Kesler, M.P., Maloney, J.G., Shirley, B.L., 1996, “Antenna Design
with the use of Photonic Bandgap Materials as All Direlectric Planar
Reflectors.,” Microwave Optical Technology Letters, 11(3),
pp.169-174.
21. Leunissen, M.E., Christova, C.G., Hynninen, A.P., Royal, C.P.,
Campbell, A.I., Imhof, A., Dijkstra, M., Roij, R.V., and Blaaderen,
A.V., 2005, “Ionic Colloidal Crystals of Oppositely Charged
Particles,” Nature, Vol. 437, No. 8, pp.235-240.
22. Liu, H., Zhang, W.X., Zhang, M. and Tsang, K.F., 2000,”Low Profile
Spiral Antenna with PBG Substrate.,“ Electronic Letters, Vol. 36,
pp.779-780.
23. Magan, R.V. and Sureshkumar, R., 2006, “Multiscale-linking
Simulation of Irreversible Colloidal Deposition in the Presence of
DLVO Interactions,”Journal of Colloid and Interface Science, 297,
pp.389–406.
24. Meseguer, F., Ramiro-Manzano, F., Bonet, E., and Rodriguez, I.,
2006, “Faceting and Commensurability in Crystal Structures of
Colloidal Thin Films” Physical Review Letters, 97, pp.028304_1-4.
143
25. Osamu Hanaizumi, Makoto Saito, Yasuo Ohtera, Shojiro Kawakami,
Satoshi Yano, Yusa Buro Segawa, Eitchi Kuramochi, Toshiki
Tamamura, Satoshi Oku AND Akiraoz Awa, 2002, “Introducing CdS
Into Two- and Three-dimensional Photonic Crystals” Optical and
Quantum Electronics, 34, pp.71-77.
26. Qian, Y., Coccioli, R., Sievenpiper, D., Radisic, V., Yablonovitch, E.
and Itoh, T., 1999, “A Microstrip Patch Antenna Using Novel
Photonic Band-gap Structures, “Microwave J., Vol. 42, pp.66-76.
27. Robertson, W.M., Arjavalingam, G., Meade, R.D., Rappe, A.M.,
Joannopoulos, J. D., 1992, “Measurement of Photonic Band Structure
in a Two-Dimensional Periodic Dielectric Array,” Physical Review
Letters, 68, pp.2023.
28. Shklover, V., Braginsky, L., Hofmann, H., 2006, “Domain Structure
and Optical Properties of Colloidal Photonic Crystal,” Materials
Science and Engineering C, 26, pp.142–148.
29. Sievenpiper, D., Zhang, L., Broas, R.F.J., Alexopolous, N.G.and
Yablonovitch, E., 1999, “High-impedance Electromagnetic Surraces
with a Forbidden Frequency Band,” IEEE TramMicrowave Theory
Tech., Vol. 47, pp 1509-1514.
30. Song, J., Sun, H., Xu, Y., Fu, Y., Matsuo, S., Misawa, H. and Du, G.,
2000, “Three-dimensional Photonic Crystal Structures Achieved With
Self-organization of Colloidal Particles,” Optical and Quantum
Electronics, 32, pp.1295-1300.
31. Stomeo, T., Bergamo, R., Cingolani, R., DeVittorio, M., D’Orazio, A.,
DeCeglia, D., Marrocco, V., 2005, “Slica Glass Bend Waveguide
Assisted by Two-Dimensional Photonic Crystal” Optical and
144
Quantum Electronics, 37, pp.229-239.
32. Thèvenot, M., Reineix, A. and Jecko, B., “FDTD to Analyze Complex
PBG Structures in the Reciprocal Space,” Microwave Optical
Technology Letters, Vol. 21, no. 1, pp.2115–2122.
33. Villeneuve, P.R., Fan, S., and Joannopoulos, J.D., 1996,
“Microcavities in Photonic Crystals: Mode Symmetry, Tunability,
and Coupling Efficiency,” Physical Review B, pp.7837-41.
34. Wang, W., Gu, B., 2005, “Self-Assembly of Two- and
Three-Dimensional Particle Arrays by Manipulating the
Hydrophobicity of Silica Nanospheres,” J. Phys. Chem. B, 109,
pp.22175-22180.
35. Yablonovitch E., 1993 “Photonic Band-Gap Structures,” Journal of
the Optical Society of America B, 10(2), Feb. pp.283-295.
36. Yee, K.S., 1996, “Numberical Solution of Initial Boundary Valume
Problems Involving Maxwell’s Equation in Isotropic Media” IEEE
Trans. Antennas and Propagation, Vol. 14, pp.302-307.
37. Yoshitake Masuda, Tetsuya Itoh, and Kunihito Koumoto, 2005,
“Self-Assembly Patterning of Silica Colloidal Crystals,” Langmuir,
21, pp.4478-4481.
38.欒丕綱,陳啟昌,2005,U光子晶體-從蝴蝶翅膀到奈米光子學U,五
南圖書出版公司。
39.李永軍,劉春艷,2006,U有序納米結構薄膜材料U,化學工業出版
社。
40.張有義,1997,U膠體及介面化學入門U,高立圖書有限公司。
145
41.洪連輝,劉立基,魏榮君,2006,U固態物理學導論U,高立圖書有
限公司。
42.陳至安,簡郁紘,李振宇,2005,U實驗設計U,第五版,華泰文化。