| 研究生: |
任書毅 Jen, Shu-yi |
|---|---|
| 論文名稱: |
白光消色差干涉儀之動靜態三維表面輪廓量測 3-Dimensional Static and Dynamic Measurements by a White-Light Achromatic Phase-Shifting Interferometry on Microscope |
| 指導教授: |
羅裕龍
Lo, Yu-lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 輪廓儀 、奈米級量測 、相移干涉術 、顯微光學量測 |
| 外文關鍵詞: | Phase-Shifting Interferometry, Profilometer, Nano Measurements, Upright Microscope |
| 相關次數: | 點閱:109 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗應用白光相移干涉術來量測微結構的表面輪廓。市面上的商用非接觸式輪廓測量儀以Mirau干涉儀為大宗。本實驗的目的在於探討Mirau干涉儀所可能產生的測量誤差,針對其誤差產生的原因作改進,期望能建立一套有別於Mirau干涉儀之基礎原理的非接觸式三維輪廓測量儀。並將此架構改裝於市售之一般立式顯微鏡,不同於一般將Linnik、Michelson、Fizeau干涉法水平架設在光學防震桌上,使得這種立式光學干涉儀有著與一般生物顯微鏡相同的水平測量平台,能同時量測微機電結構的靜態三維輪廓與動態變形。
本實驗從研究Mirau干涉儀為出發點,將其相位移動機構從原本由移動參考面鏡產生,改成由旋轉偏極波片組來產生。旋轉偏極波片組的相移機構是應用不同偏極態之間的相位變化來製造相位移動,而市售的Mirau物鏡並無此功能。所以本實驗選擇Linnik干涉法來取代Mirau物鏡的干涉功能,並改善動態量測的同步化訊號,增加高頻量測的準確度。本實驗的預期解析度可達奈米等級,動態測量頻寬可達Mega Hertz以上,觀乎使用的物鏡放大倍數與環境干擾影響的大小而定。本架構為一同時擁有非接觸式、非破壞式、高解析度、高動態頻寬之即時量測系統。
本實驗選擇於系統輸入端架設偏極波片相移組,與架設相移機構於系統輸出端相比,將相移機構置於系統輸入端之作用在改變入射光的偏極態變化,不會影響最終成像,且使用較少的波片數量,因此有較優的準確度。與Mirau干涉儀之相移機構相比,旋轉波片之相移機構直接改變不同偏極態線偏光的相位,比之Mirau干涉儀使用步進馬達移動參考面鏡產生相移,少去將角度變化轉換成距離時的計算誤差(Degree to Distance),亦少去在後續影像處理時的同調函數線性化假設;旋轉偏極態波片組的相移方法比之傳統Mirau干涉儀,有著較高的精確性與較快的訊號處理時間之優點。
A 3-Dimensional profilometer focuses on the measurement of microstructure surface profiles by using a new white-light phase-shifting interferometry was developed. This system originates from interferometric microscope with Mirau object lens. This kind of upright microscope differs from other interferometries, such as Linnik, Michelson, Fizeau interferometry, which were installed on optical table. The upright microscope can measure an item not only static but also kinematic specimen.
Unlike the general kinematic microscopes, the setup uses a polarizer phase-shifter without using a PZT for a Mirau object lens. We combine Linnik interferometry on an upright microscope, and co-operate with a polarizer phase-shifter. The measurement with sub-wavelength scale resolution is achieved by measuring the fringe contrast function of the white-light interferogram. This non-destructive, non-contact optical interferometry can offer desirable depth measurement sensitivity and density of lateral resolution. This system is based on an available phase-shifters which employ a rotating polarization component at the light source end of the interferometry.
In this new setup, a half-wave plate and a quarter-wave plate were used to modulate the phase difference of incident beams before entering microscope. The demanding precision of a polarization phase-shifter is not as high as the requirement in a traditional phase-shifting method with PZT for a Mirau object lens. Therefore, by using the technique, the speed of image processing will be faster than the speed of traditional phase-shifting method by PZT for a Mirau object lens. This new method has no problem like the noises caused by a PZT from the traditional one.
Annalisa, C., Luca, P., “Phase-shifting speckle interferometry: a noise reduction filter for phase unwrapping” Opt. Eng., Vol.36, pp.2466-2472, (1997).
Bosseboeuf, A., Gilles, J.P., Danaie, K., Yahiaoui, R., Dupeux, M., Puissant, J.P., Chabrier A., Fort, F., and Coste, P., “A versatile microscopic profilometer-vibrometer for static and dynamic characterization of micromechanical devices,” Proc. SPIE, vol. 3825, pp.123-133, (1999).
Bosseboeuf, A., Petitgrand, S., “Application of microscopic interferometry techniques in the MEMS field” Proc. of SPIE, Vol. 5145, pp.1-16 (2003).
Brophy, C. P., “Effect of intensity error correlation on the computed phase of phase-shifting interferometry”, J. Opt. Soc. Am. A, no9, pp237, (1990).
Burdess, J.S., Harris, A.J., and Wood, D., “A system for dynamic characterization of microstructures,” J. microelectromech Sys., Vol.6, pp.322-328, (1997).
Creath, K., ”Step height measurement using two-wavelength interferometry” Applied Optics, Vol. 26, pp.2810-2816, (1987).
Creath, K., “Phase-shifting speckle interferometry” Applied Optics, Vol.24, pp.3053-3058, (1985).
Cheng, Y.Y., and Wyant, J. C., “Two-wavelength phase shifting interferometry” Applied Optics, Vol. 24, pp.4539-4543, (1984).
Cheng, Y.Y., and Wyant, J. C., “Multiple-wavelength phase-shifting interferometry” Applied Optics, Vol.24, pp.804-807, (1985).
Daniel Malacara, “Optical shop testing”, second edition, Chp. 7, John Wiley&Sons, New York, (19920.
Dennis, C., Gary, A., and Louis, A., “Cellular-automata method for phase unwrapping” Opt. Soc. Am. A, Vol.4, No.1, pp.267-280, (1986).
Dorsch, RG.., Hausler, G.., Herrmann, JM., “Laser triangulation: fundamental uncertainty in distance measurement” Appl. Opt., No. 7, Vol.33, pp.1306-1314, (1994).
Erna, M., Wolfgang, D., and Ferrari, J.A., “Polarization shifting method for step interferometry” Appl. Opt. 7, pp.53-60 (1998).
Freeman, D.M., Davis, C.Q., “Using a light microscope to measure motions with nanometer accuracy” Optical Engineering, Vol.37, pp.1299-1304, (1998).
Hariharan, P., Oreb, B.F., and Eiju, T., “Digital phase-shifting interferometry:a sample error-compensating phase calculation algorithm.” Appl. Opt. 26, pp.2504-2506 (1987).
Hart, M.R., Conant, R.A., Lau, K.Y., and Muller, R.S., “Stroboscopic phase-shifting interferometry for dynamic characterization of optical MEMS,” Opt. Eng., Vol.3749, pp.468-469, (1999).
Helen, S.S., Kothiyal, M.P., and Sirohi, R.S., “Achromatic phase shifting by a rotating polarizer,” Opt. Com. 154, pp.249-254 (1998).
Helen, S.S., Kothiyal, M.P., and Sirohi, R.S., “Polarization phase shifting in white light interferomert,” Pro. Of SPIE, vol.4101, pp.215-224 (2000).
Helen, S.S., Kothiyal, M.P., and Sirohi, R.S., “White-light interferometry with polarization phase-shifter at the input of the interferometer,” J. Mod. Opt. 47, pp.1137-1145 (2000).
Kato, J., Yamaguchi, I., and Matsummura, T., “Multicolor digital holography with an achromatic phase shifter,” Opt. letter. 27, pp.1403-1405 (2002).
Kino, GS., Chim, SSC., “Mirau correlation microscope,” Appl. Opt., Vol. 29, No. 26, pp.3775-3783 (1990).
Patrick Sandoz, “An algorithm for profilometry by white light phase shifting interferometry,” J. Mod. Optics, Vol.43, No.8, pp.1545-1554, (1996).
Patrick, S. and Gilbert, T., “Profilometry by zero-order interference fringe identification,” J. Mod. Optics, Vol.40, No.9, pp.1691-1700 (1993).
Peter, de G., Deck, L., “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. mod. Opt. 42, pp.389-401 (1995).
Petitgrand, S., Yahiaoui, R., Danaie, K., and Bosseboeuf, A., “3D measurement of optical MEMS using stroboscopic interferometry,” Optics and lasers in Engineering, Vol.36, pp.77-101, (2001).
Petitgrand, S., Yahiaoui, R., Danaie, K., and Bosseboeuf, A., “Quantitative time-averaged nicroscope interferometry for micromechanical device vibration mode characterization” Proc, SPIE, Vol.4400, pp.51-60, (2001).
Quan, C., Tay, C.J., Shang, H.M., Bryanston-Cross, P.J., “Contour measurement by fibre optic fringe projection and Fourier transform analysis” Optics Communications, Vol.119, pp.479-483, (1995).
Robinson, D.W., Reid, G.T., “Interferogram Analysis: digital fringe pattern measurement techniques,” Ch. 4, Institute of Physics, Bristol, (1993).
Roy, M., Cox, G., and Hariharan, P., “Low coherence interference microscopy with an improved switchable achromatic phase shifter,” Opt. Express. 13, pp.9125-9130 (2005).
Sandoz, P., “An algorithm for profilometry by white-light phase-shifting interferometry,” J. Mod. Opt. 43, pp.1545-1554 (1996).
Stout, K. F., and Blunt, L., “Three-dimensional surface topography” second edition, p.89, Penton Pres, (2000).
Suja, H.S., Kothiyal, M.P., and Sirohi, R.S., “Phase shifting by a rotating polarizer in white light interferometry for surface profiling” J. Mod. Optics, 46, pp.993-1001 (1999).
Takeda, M., and Mutoh, K., “Fourier transform profilometry for the automatic measurement of 3-D objective shapes” Applied Optics, Vol.22, pp.3977-3982, (1983).
Warren, J. Smith, “Modern optical engineering” , third edition, chapter 4, p91-123, McGrew-Hill, (2000).
Watanabe, Y., Hayasaka, Y., Sato, M., and Tanno, N., “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer” Applied Optics, 44, pp.1387-1392 (2005).
William, W., Macy, J., “Two-dimensional fringe-pattern analysis”, Ap. Opt., Vol.22, No.23, pp.3898-3902, (1983).
Wyant, J. C., “How to extend interferometry for rough-surface tests” Laser focus world, 131, pp.131-135 (1993).
Brown, G.M., Grant, R.M., and Stroke, G.W., “Theory of holographic interferometry,” J. Ac. Soc. Am., Vol. 45(5), pp.1166-1179, (1969).
Zongtao, G., Fumio, K., Shinichi, M., Mitsuo, T., “Coordinate-transform technique for closed-fringe analysis by the Fourier-transform method”, Ap. Opt., Vol.40, No.10, pp.1649-1657, (2001).
陳建丞, “白光相移干涉術量測三維表面輪廓”, 國立交通大學光電工程研究所碩士論文, (2004).
林器躉, “閃頻式光干涉動態量測系統之研製” , 國立台灣大學機械工程學研究所碩士論文, (2005).