簡易檢索 / 詳目顯示

研究生: 郭以心
Kuo, Yi-Hsin
論文名稱: 評估奈米生物力學理論於AFM分析之適用性並應用於高分子雙層膜及小鼠細胞
Evaluation of applicability of nanobiomechanics to AFM analysis for polymer bilayer films and mouse cells
指導教授: 劉浩志
Liu, Hao-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 原子力顯微鏡奈米壓痕試驗楊氏模數雙層膜基板效應
外文關鍵詞: AFM nanoindentation, Elastic modulus, Bilayer film, Substrate effect
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物材料的機械性質影響著許多生物反應的途徑(Biological process),例如細胞形態的改變及遷移、自我修復能力和機械信號的傳導。而原子力顯微鏡 (Atomic Force Microscope, AFM)有著能在生理環境下對生物體進行即時、非破壞性量測的優勢,因此近年來生物、醫學以及藥物學領域開始廣泛地運用AFM對生物材料進行力學分析。然而,由AFM獲得之Force-Distance curve需要透過接觸模型計算楊氏模數(Young’s modulus, E),在轉換的過程中有諸多因素得納入考量,尤其是樣品與探針間的接觸行為與接觸模型之間的適用性,以及因基板影響導致的量測到的值遠高於材料本身的E值,這兩者均會造成量測結果出現嚴重的誤差且準確度下降,使得不同材料的力學性質及各團隊的研究成果難以比較並整合。
    為此本研究除了藉由各種材料的Force-Distance curve討論接觸模型之適用性外,也透過製備不同厚度的高分子PDMS(Polydimethylsiloxane)薄膜於兩種E值基板PMMA和玻璃進行AFM nanoindentation實驗,討論基板效應與軟性材料薄膜間的關係。而後依據實驗結果統整出初步的黏附接觸模型選用圖,從中判斷軟性高分子材料適合以Johnson-Kendall-Roberts(JKR)模型計算其E值;也發現量測到的薄膜E值之所以會高於本身的材料性質,除了基板給予的影響(此研究稱其為Elastic field effect)外,也存在著Surface effect、Stiffening effect以及Substrate deformation,且每一種效應對探針下壓深度都有不同程度上的依賴性。與材料表面性質有關的Surface effect發生的區間介於下壓深度30 ~ 500 nm;基板造成的Elastic field effect以及因樣品有限厚度產生的Stiffening effect則是從探針接觸薄膜起,便會一直存在的影響;而Substrate deformation發生的下壓深度取決於薄膜本身之E值,以4.40 MPa的PDMS為例,該效應發生於下壓深度2 μm,此時下層基板已共同抵抗探針施加的力。
    最後本研究藉由高分子薄膜的結果與討論建立一套簡單的分析流程,實際應用於小鼠細胞的力學分析,探討L929正常細胞與B16F10惡性細胞的機械性質之差異,並根據評估之結果進行流程的修正。其中,驗證AFM能夠辨識相似形貌但不同細胞種之機械性質,又B16F10之E值相較於L929來得高,推測與其細胞形貌以及胞質內部結構較為相關。另外,量測到的細胞力學性質取決於實驗手法與使用的假設接觸模型,例如:彈性、黏彈性和張力等,因此事先擬定目標量測之細胞力學性質及實驗方法,亦對於統整各團隊研究成果至關重要。

    We propose the adhesive contact model selection map which suggested soft biological materials are suitable to be calculated by the Johnson-Kendall-Roberts model. It is also found that the reason why using AFM nanoindentation to measure the Young’s modulus of thin soft film is often overestimated. Because there are surface effect, stiffening effect, substrate deformation and the influence of the substrate (is also called elastic field effect), each effect is indentation depth dependent. Moreover, it is assumed that the impact of elastic field effect is in proportion to substrate with different Young's modulus, while surface effect is determined by material properties of the sample surface.

    摘要.........I Extended abstract.........III 致謝.........IX 目錄.........XI 表目錄.........XIV 圖目錄.........XV 第 1 章 緒論.........1 1.1 前言.........1 1.2 研究動機與目的.........2 第 2 章 文獻回顧與理論基礎.........3 2.1 生物力學.........3 2.2 AFM應用於生物力學分析.........5 2.3 原子力顯微鏡.........8 2.3.1 AFM基本原理.........8 2.3.2 機械性質分析.........9 2.4 接觸力學理論.........12 2.4.1 Johnson-Kendall-Roberts model.........13 2.4.2 Derjaguin-Muller-Toporov model.........15 2.4.3 Tabor參數及Maugis-Dugdale model.........16 2.4.4 Power law 選用模型方法.........19 2.5 基板效應.........21 2.5.1 硬薄膜之基板效應.........21 2.5.2 軟薄膜之基板效應.........21 2.6 樣品有限厚度 - Stiffening effect.........23 2.7 AFM之延伸分析及應用.........25 2.7.1 液態環境下的考量.........25 2.7.2 基於AFM量測黏彈性質.........25 第 3 章 材料與方法.........28 3.1 實驗設計.........28 3.2 實驗材料.........29 3.2.1 均質高分子薄膜製備.........29 3.2.2 高分子雙層薄膜製備.........30 3.2.3 細胞培養及樣品製備.........30 3.3 實驗儀器.........33 3.3.1 原子力顯微鏡及探針.........33 3.3.2 表面輪廓儀.........34 3.4 實驗方法.........35 3.4.1 AFM校正及參數.........35 3.4.2 基於JKR模型擬合數據之方法.........36 3.4.3 確認contact point.........44 3.4.4 量測細胞之參數.........46 第 4 章 結果與討論.........48 4.1 Tabor參數與各材料間的關係.........48 4.1.1 E > 1 GPa:MAPbI3薄膜.........48 4.1.2 1 GPa > E > 1 MPa:軟性高分子薄膜及細菌.........50 4.1.3 可能影響Tabor參數之因素.........52 4.1.4 黏附接觸模型選用圖.........55 4.2 比較數據擬合方式.........57 4.3 證明基板效應的存在.........60 4.3.1 MAPbI3奈米壓痕之模擬.........60 4.3.2 PDMS軟性高分子之Force-Distance curve分析.........62 4.4 軟性高分子薄膜受基板影響之程度.........66 4.4.1 Shallow indentation - 下壓深度小於300 nm.........68 4.4.2 Deep indentation -下壓深度大於300 nm.........73 4.4.3 綜合討論.........77 4.5 生物應用-小鼠細胞.........81 4.5.1 細胞形貌及力-位移曲線.........82 4.5.2 B16F10和L929之機械性質分析.........86 4.5.3 評估與討論.........92 第 5 章 結論.........93 第 6 章 未來展望.........96 第 7 章 參考文獻.........97

    [1] P. H. Wu, D. R. B. Aroush, A. Asnacios, W. C. Chen, M. E. Dokukin, B. L. Doss, P. Durand Smet, A. Ekpenyong, J. Guck, and N. V. Guz, "A comparison of methods to assess cell mechanical properties," Nature methods, vol. 15, pp. 491-498, 2018.
    [2] K. Van Vliet, G. Bao, and S. Suresh, "The biomechanics toolbox: experimental approaches for living cells and biomolecules," Acta materialia, vol. 51, no. 19, pp. 5881-5905, 2003.
    [3] P. A. Pullarkat, P. A. Fernández, and A. Ott, "Rheological properties of the eukaryotic cell cytoskeleton," Physics Reports, vol. 449, no. 1-3, pp. 29-53, 2007.
    [4] Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-Martin, A. Engel, C. Gerber, and D. J. Müller, "Imaging modes of atomic force microscopy for application in molecular and cell biology," Nature nanotechnology, vol. 12, no. 4, p. 295, 2017.
    [5] D. J. Müller and Y. F. Dufrêne, "Atomic force microscopy: a nanoscopic window on the cell surface," Trends in cell biology, vol. 21, no. 8, pp. 461-469, 2011.
    [6] J. Hörber and M. Miles, "Scanning probe evolution in biology," Science, vol. 302, no. 5647, pp. 1002-1005, 2003.
    [7] D. J. Müller and Y. F. Dufrene, "Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 269-277.
    [8] A. D. Ozkan, A. E. Topal, A. Dana, M. O. Guler, and A. B. Tekinay, "Atomic force microscopy for the investigation of molecular and cellular behavior," Micron, vol. 89, pp. 60-76, 2016.
    [9] Y. F. Dufrêne and A. E. Pelling, "Force nanoscopy of cell mechanics and cell adhesion," Nanoscale, vol. 5, no. 10, pp. 4094-4104, 2013.
    [10] P. Hinterdorfer and Y. F. Dufrêne, "Detection and localization of single molecular recognition events using atomic force microscopy," Nature methods, vol. 3, no. 5, pp. 347-355, 2006.
    [11] Y. Abidine, A. Constantinescu, V. M. Laurent, V. S. Rajan, R. Michel, V. Laplaud, A. Duperray, and C. Verdier, "Mechanosensitivity of cancer cells in contact with soft substrates using AFM," Biophysical journal, vol. 114, no. 5, pp. 1165-1175, 2018.
    [12] M. Benoit, D. Gabriel, G. Gerisch, and H. E. Gaub, "Discrete interactions in cell adhesion measured by single-molecule force spectroscopy," Nature cell biology, vol. 2, no. 6, pp. 313-317, 2000.
    [13] G. Smolyakov, M. Cauquil, C. Séverac, V. Lachaize, C. Guilbeau-Frugier, J. M. Senard, C. Galés, and E. Dague, "Biophysical properties of cardiomyocyte surface explored by multiparametric AFM," Journal of structural biology, vol. 198, no. 1, pp. 28-37, 2017.
    [14] N. Gavara, "A beginner's guide to atomic force microscopy probing for cell mechanics," Microscopy research and technique, vol. 80, no. 1, pp. 75-84, 2017.
    [15] V. Vadillo-Rodriguez, T. J. Beveridge, and J. R. Dutcher, "Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy," Journal of bacteriology, vol. 190, no. 12, pp. 4225-4232, 2008.
    [16] M. E. Dokukin, N. V. Guz, and I. Sokolov, "Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments," Biophysical journal, vol. 104, no. 10, pp. 2123-2131, 2013.
    [17] A. C. Chang, J. D. Liao, and B. H. Liu, "Practical assessment of nanoscale indentation techniques for the biomechanical properties of biological materials," Mechanics of Materials, vol. 98, pp. 11-21, 2016.
    [18] K. Johnson, "One hundred years of Hertz contact," Proceedings of the Institution of Mechanical Engineers, vol. 196, no. 1, pp. 363-378, 1982.
    [19] G. Pharr, W. Oliver, and F. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," Journal of materials research, vol. 7, no. 3, pp. 613-617, 1992.
    [20] K. L. Johnson, K. Kendall, and a. Roberts, "Surface energy and the contact of elastic solids," Proceedings of the royal society of London. A. mathematical and physical sciences, vol. 324, no. 1558, pp. 301-313, 1971.
    [21] D. Maugis, "Adhesion of spheres: the JKR-DMT transition using a Dugdale model," Journal of colloid and interface science, vol. 150, no. 1, pp. 243-269, 1992.
    [22] E. K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophysical journal, vol. 82, no. 5, pp. 2798-2810, 2002.
    [23] A. C. Chang and B. H. Liu, "Modified flat-punch model for hyperelastic polymeric and biological materials in nanoindentation," Mechanics of Materials, vol. 118, pp. 17-21, 2018.
    [24] A. Janshoff and C. Steinem, "Mechanics of lipid bilayers: What do we learn from pore-spanning membranes?," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1853, no. 11, pp. 2977-2983, 2015.
    [25] J. L. Nourse and M. M. Pathak, "How cells channel their stress: Interplay between Piezo1 and the cytoskeleton," in Seminars in cell & developmental biology, 2017, vol. 71: Elsevier, pp. 3-12.
    [26] K. A. Jansen, D. M. Donato, H. E. Balcioglu, T. Schmidt, E. H. Danen, and G. H. Koenderink, "A guide to mechanobiology: where biology and physics meet," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1853, no. 11, pp. 3043-3052, 2015.
    [27] K. Jansen, P. Atherton, and C. Ballestrem, "Mechanotransduction at the cell-matrix interface," in Seminars in cell & developmental biology, 2017, vol. 71: Elsevier, pp. 75-83.
    [28] L. Smith, S. Cho, and D. E. Discher, "Mechanosensing of matrix by stem cells: from matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo," in Seminars in cell & developmental biology, 2017, vol. 71: Elsevier, pp. 84-98.
    [29] O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H. P. Lee, E. Lippens, and G. N. Duda, "Hydrogels with tunable stress relaxation regulate stem cell fate and activity," Nature materials, vol. 15, no. 3, p. 326, 2016.
    [30] Y. C. Yeh, E. A. Corbin, S. R. Caliari, L. Ouyang, S. L. Vega, R. Truitt, L. Han, K. B. Margulies, and J. A. Burdick, "Mechanically dynamic PDMS substrates to investigate changing cell environments," Biomaterials, vol. 145, pp. 23-32, 2017.
    [31] E. E. Charrier, K. Pogoda, R. G. Wells, and P. A. Janmey, "Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation," Nature communications, vol. 9, no. 1, p. 449, 2018.
    [32] P. Clark, P. Connolly, A. Curtis, J. Dow, and C. Wilkinson, "Cell guidance by ultrafine topography in vitro," Journal of cell science, vol. 99, no. 1, pp. 73-77, 1991.
    [33] M. Wang, J. Zhao, L. Zhang, F. Wei, Y. Lian, Y. Wu, Z. Gong, S. Zhang, J. Zhou, and K. Cao, "Role of tumor microenvironment in tumorigenesis," Journal of Cancer, vol. 8, no. 5, p. 761, 2017.
    [34] B. Cat, D. Stuhlmann, H. Steinbrenner, L. Alili, O. Holtkötter, H. Sies, and P. Brenneisen, "Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species," Journal of cell science, vol. 119, no. 13, pp. 2727-2738, 2006.
    [35] P. P. Provenzano and P. J. Keely, "Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling," Journal of cell science, vol. 124, no. 8, pp. 1195-1205, 2011.
    [36] M. E. Grady, R. J. Composto, and D. M. Eckmann, "Cell elasticity with altered cytoskeletal architectures across multiple cell types," Journal of the mechanical behavior of biomedical materials, vol. 61, pp. 197-207, 2016.
    [37] M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, "Review on Cell Mechanics: Experimental and Modeling Approaches," Applied Mechanics Reviews, vol. 65, no. 6, 2013, doi: 10.1115/1.4025355.
    [38] E. Moeendarbary and A. R. Harris, "Cell mechanics: principles, practices, and prospects," Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 6, no. 5, pp. 371-388, 2014.
    [39] A. Sancho, I. Vandersmissen, S. Craps, A. Luttun, and J. Groll, "A new strategy to measure intercellular adhesion forces in mature cell-cell contacts," Scientific reports, vol. 7, p. 46152, 2017.
    [40] J. Zemła, J. Danilkiewicz, B. Orzechowska, J. Pabijan, S. Seweryn, and M. Lekka, "Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues," in Seminars in cell & developmental biology, 2018, vol. 73: Elsevier, pp. 115-124.
    [41] B. R. Brückner and A. Janshoff, "Elastic properties of epithelial cells probed by atomic force microscopy," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol. 1853, no. 11, pp. 3075-3082, 2015.
    [42] J. Liu, N. Sun, M. A. Bruce, J. C. Wu, and M. J. Butte, "Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes," PloS one, vol. 7, no. 5, p. e37559, 2012.
    [43] I. Dulińska, M. Targosz, W. Strojny, M. Lekka, P. Czuba, W. Balwierz, and M. Szymoński, "Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy," Journal of biochemical and biophysical methods, vol. 66, no. 1-3, pp. 1-11, 2006.
    [44] B. S. Elkin, E. U. Azeloglu, K. D. Costa, and B. Morrison Iii, "Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation," Journal of neurotrauma, vol. 24, no. 5, pp. 812-822, 2007.
    [45] H. Jin, Q. Liang, T. Chen, and X. Wang, "Resveratrol protects chondrocytes from apoptosis via altering the ultrastructural and biomechanical properties: an AFM study," PLoS One, vol. 9, no. 3, p. e91611, 2014.
    [46] J. M. Maloney, D. Nikova, F. Lautenschläger, E. Clarke, R. Langer, J. Guck, and K. J. Van Vliet, "Mesenchymal stem cell mechanics from the attached to the suspended state," Biophysical journal, vol. 99, no. 8, pp. 2479-2487, 2010.
    [47] R. Mahaffy, S. Park, E. Gerde, J. Käs, and C.-K. Shih, "Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy," Biophysical journal, vol. 86, no. 3, pp. 1777-1793, 2004.
    [48] J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound in medicine & biology, vol. 29, no. 10, pp. 1387-1396, 2003.
    [49] K. Hayashi and M. Iwata, "Stiffness of cancer cells measured with an AFM indentation method," Journal of the mechanical behavior of biomedical materials, vol. 49, pp. 105-111, 2015.
    [50] D. E. Discher, P. Janmey, and Y. l. Wang, "Tissue cells feel and respond to the stiffness of their substrate," Science, vol. 310, no. 5751, pp. 1139-1143, 2005.
    [51] E. M. Darling, S. Zauscher, J. A. Block, and F. Guilak, "A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?," Biophysical journal, vol. 92, no. 5, pp. 1784-1791, 2007.
    [52] A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, and A. San Paulo, "Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy," ACS nano, vol. 10, no. 3, pp. 3365-3374, 2016.
    [53] M. Lekka, D. Gil, K. Pogoda, J. Dulińska-Litewka, R. Jach, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, Z. Stachura, and J. Wiltowska-Zuber, "Cancer cell detection in tissue sections using AFM," Archives of biochemistry and biophysics, vol. 518, no. 2, pp. 151-156, 2012.
    [54] M. Prabhune, G. Belge, A. Dotzauer, J. Bullerdiek, and M. Radmacher, "Comparison of mechanical properties of normal and malignant thyroid cells," Micron, vol. 43, no. 12, pp. 1267-1272, 2012.
    [55] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
    [56] J. I. AG, "A practical guide to AFM force spectroscopy and data analysis," Technical Note, JPK Instruments AG, Berlin, Germany, 2014.
    [57] C. M. Hammer and T. E. Schäffer, "Atomic Force Microscopy Crosslinks Interdisciplinary Eye Research," Medical hypothesis, discovery and innovation in ophthalmology, vol. 4, no. 1, p. 1, 2015.
    [58] S. B. Kaemmer, "Introduction to bruker’s scanasyst and peakforce tapping afm technology," Bruker application note. Bruker Nano Inc., Santa Barbara, CA, 2011.
    [59] B. Pittenger, N. Erina, and C. Su, "Quantitative mechanical property mapping at the nanoscale with PeakForce QNM," Application Note Veeco Instruments Inc, pp. 1-12, 2010.
    [60] B. Pittenger, N. Erina, and C. Su, "Mechanical Property Mapping at the Nanoscale Using PeakForce QNM Scanning Probe Technique," in Nanomechanical Analysis of High Performance Materials, (Solid Mechanics and Its Applications, 2014, ch. Chapter 2, pp. 31-51.
    [61] A. Berquand, "Quantitative imaging of living biological samples by PeakForce QNM atomic force microscopy," Bruker Appl Note, vol. 135, pp. 1-10, 2011.
    [62] Y. Hua, "PeakForce-QNM advanced applications training 2014," Bruker. USA, 2014.
    [63] R. S. Bradley, "LXXIX. The cohesive force between solid surfaces and the surface energy of solids," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 13, no. 86, pp. 853-862, 1932.
    [64] D. Xu, K. M. Liechti, and K. Ravi-Chandar, "On the modified Tabor parameter for the JKR–DMT transition in the presence of a liquid meniscus," Journal of colloid and interface science, vol. 315, no. 2, pp. 772-785, 2007.
    [65] K. Johnson and J. Greenwood, "An adhesion map for the contact of elastic spheres," Journal of colloid and interface science, vol. 192, no. 2, pp. 326-333, 1997.
    [66] J. Greenwood, "Adhesion of elastic spheres," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 453, no. 1961, pp. 1277-1297, 1997.
    [67] E. Barthel, "Adhesive elastic contacts: JKR and more," Journal of Physics D: Applied Physics, vol. 41, no. 16, p. 163001, 2008.
    [68] J. N. Israelachvili, Intermolecular and surface forces. Academic press, 2015.
    [69] B. Taljat and G. M. Pharr, "Development of pile-up during spherical indentation of elastic–plastic solids," International journal of solids and structures, vol. 41, no. 14, pp. 3891-3904, 2004.
    [70] D. Tabor, "Surface forces and surface interactions," in Plenary and Invited Lectures: Elsevier, 1977, pp. 3-14.
    [71] A. C. Fischer-Cripps and D. Nicholson, "Nanoindentation. Mechanical engineering series," Appl. Mech. Rev., vol. 57, no. 2, pp. B12-B12, 2004.
    [72] R. Saha and W. D. Nix, "Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," Acta materialia, vol. 50, no. 1, pp. 23-38, 2002.
    [73] T. Kurokawa, J. Gong, and Y. Osada, "Substrate effect on topographical, elastic, and frictional properties of hydrogels," Macromolecules, vol. 35, no. 21, pp. 8161-8166, 2002.
    [74] H. Shulha, A. Kovalev, N. Myshkin, and V. V. Tsukruk, "Some aspects of AFM nanomechanical probing of surface polymer films," European Polymer Journal, vol. 40, no. 5, pp. 949-956, 2004.
    [75] K. Geng, F. Yang, T. Druffel, and E. A. Grulke, "Nanoindentation behavior of ultrathin polymeric films," Polymer, vol. 46, no. 25, pp. 11768-11772, 2005.
    [76] H. K. Nguyen, S. Fujinami, and K. Nakajima, "Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius," Polymer, vol. 87, pp. 114-122, 2016.
    [77] P. D. Garcia and R. Garcia, "Determination of the elastic moduli of a single cell cultured on a rigid support by force microscopy," Biophysical journal, vol. 114, no. 12, pp. 2923-2932, 2018.
    [78] C. H. Mathis and N. D. Spencer, "A two-step method for rate-dependent nano-indentation of hydrogels," Polymer, vol. 137, pp. 276-282, 2018.
    [79] M. Chyasnavichyus, S. L. Young, and V. V. Tsukruk, "Probing of polymer surfaces in the viscoelastic regime," Langmuir, vol. 30, no. 35, pp. 10566-10582, 2014.
    [80] C. Ganser, C. Czibula, D. Tscharnuter, T. Schöberl, C. Teichert, and U. Hirn, "Combining adhesive contact mechanics with a viscoelastic material model to probe local material properties by AFM," Soft matter, vol. 14, no. 1, pp. 140-150, 2018.
    [81] F. M. Hecht, J. Rheinlaender, N. Schierbaum, W. H. Goldmann, B. Fabry, and T. E. Schäffer, "Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale," Soft matter, vol. 11, no. 23, pp. 4584-4591, 2015.
    [82] C. Braunsmann, R. Proksch, I. Revenko, and T. E. Schaeffer, "Creep compliance mapping by atomic force microscopy," Polymer, vol. 55, no. 1, pp. 219-225, 2014.
    [83] S. Moreno-Flores, R. Benitez, M. dM Vivanco, and J. L. Toca-Herrera, "Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components," Nanotechnology, vol. 21, no. 44, p. 445101, 2010.
    [84] P. D. Garcia and R. Garcia, "Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy," Nanoscale, vol. 10, no. 42, pp. 19799-19809, 2018.
    [85] E. A. López-Guerra and S. D. Solares, "Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy," Beilstein journal of nanotechnology, vol. 5, no. 1, pp. 2149-2163, 2014.
    [86] J. C. Costa, F. Spina, P. Lugoda, L. Garcia-Garcia, D. Roggen, and N. Münzenrieder, "Flexible sensors—from materials to applications," Technologies, vol. 7, no. 2, p. 35, 2019.
    [87] D. M. Ebenstein and K. J. Wahl, "A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves," Journal of colloid and interface science, vol. 298, no. 2, pp. 652-662, 2006.
    [88] D. M. Ebenstein, "Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water," Journal of Materials Research, vol. 26, no. 8, pp. 1026-1035, 2011.
    [89] A.-Y. Jee and M. Lee, "Comparative analysis on the nanoindentation of polymers using atomic force microscopy," Polymer Testing, vol. 29, no. 1, pp. 95-99, 2010.
    [90] A. Rohatgi, J. P. Thomas, J. N. Baucom, W. R. Pogue III, L. B. Cerully, D. M. Ebenstein, and K. J. Wahl, "Processing and mechanical performance of liquid crystalline polymer/nanofiber monofilaments," Scripta Materialia, vol. 58, no. 1, pp. 25-28, 2008.
    [91] D. M. Ebenstein and L. A. Pruitt, "Nanoindentation of biological materials," Nano Today, vol. 1, no. 3, pp. 26-33, 2006.
    [92] P. J. Nowatzki, C. Franck, S. A. Maskarinec, G. Ravichandran, and D. A. Tirrell, "Mechanically tunable thin films of photosensitive artificial proteins: preparation and characterization by nanoindentation," Macromolecules, vol. 41, no. 5, pp. 1839-1845, 2008.
    [93] N. Fujisawa and M. V. Swain, "Effect of unloading strain rate on the elastic modulus of a viscoelastic solid determined by nanoindentation," Journal of materials research, vol. 21, no. 3, pp. 708-714, 2006.
    [94] C. B. Walsh and E. I. Franses, "Ultrathin PMMA films spin-coated from toluene solutions," Thin Solid Films, vol. 429, no. 1-2, pp. 71-76, 2003.
    [95] A. Y. Jee and M. Lee, "Comparative analysis on the nanoindentation of polymers using atomic force microscopy," Polymer Testing, vol. 29, no. 1, pp. 95-99, 2010.
    [96] A. Strojny, X. Xia, A. Tsou, and W. W. Gerberich, "Techniques and considerations for nanoindentation measurements of polymer thin film constitutive properties," Journal of adhesion science and technology, vol. 12, no. 12, pp. 1299-1321, 1998.
    [97] T. Jin, Z. Zhou, Z. Liu, G. Xiao, G. Yuan, and X. Shu, "Sensitivity of PMMA nanoindentation measurements to strain rate," Journal of Applied Polymer Science, vol. 132, no. 17, 2015.
    [98] T. Young, M. Monclus, T. Burnett, W. Broughton, S. Ogin, and P. Smith, "The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers," Measurement Science and Technology, vol. 22, no. 12, p. 125703, 2011.
    [99] J. L. Hutter and J. Bechhoefer, "Calibration of atomic‐force microscope tips," Review of Scientific Instruments, vol. 64, no. 7, pp. 1868-1873, 1993.
    [100] J. C. Grunlan, X. Xia, D. Rowenhorst, and W. W. Gerberich, "Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft materials," Review of Scientific instruments, vol. 72, no. 6, pp. 2804-2810, 2001.
    [101] Y. Sun, B. Akhremitchev, and G. C. Walker, "Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples," Langmuir, vol. 20, no. 14, pp. 5837-5845, 2004.
    [102] R. W. Carpick, D. F. Ogletree, and M. Salmeron, "A general equation for fitting contact area and friction vs load measurements," Journal of colloid and interface science, vol. 211, no. 2, pp. 395-400, 1999.
    [103] O. Pietrement and M. Troyon, "General equations describing elastic indentation depth and normal contact stiffness versus load," Journal of colloid and interface science, vol. 226, no. 1, pp. 166-171, 2000.
    [104] B. H. Liu, K.-L. Li, W.-K. Huang, and J.-D. Liao, "Nanomechanical probing of the septum and surrounding substances on Streptococcus mutans cells and biofilms," Colloids and Surfaces B: Biointerfaces, vol. 110, pp. 356-362, 2013.
    [105] Q. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, "AFM indentation study of breast cancer cells," Biochemical and biophysical research communications, vol. 374, no. 4, pp. 609-613, 2008.
    [106] N. Guz, M. Dokukin, V. Kalaparthi, and I. Sokolov, "If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments," Biophysical journal, vol. 107, no. 3, pp. 564-575, 2014.
    [107] W. C. Liao, "Degradation mechanism and photoelectric properties of methylammonium lead iodide in single crystal and thin film investigated by scanning probe technology," Master's Thesis, Department of Materials Science and Engineering, National Cheng Kung University, 2018.
    [108] S. J. Shen, "Accurate micro and nano scale measurements of mechanical properties for homogeneous and heterogeneous viscoelastic thin films," Master's Thesis, Department of Materials Science and Engineering, National Cheng Kung University, 2019.
    [109] C. Y. Huang, "Analysis of the mechanical and electrical properties of environmental bacterial isolate under arsenic exposure using Atomic force microscopy," Master's Thesis, Department of Materials Science and Engineering, National Cheng Kung University, 2018.
    [110] A. E. Pelling, S. Sehati, E. B. Gralla, J. S. Valentine, and J. K. Gimzewski, "Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae," Science, vol. 305, no. 5687, pp. 1147-1150, 2004.
    [111] L. Guolla, M. Bertrand, K. Haase, and A. E. Pelling, "Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces," Journal of Cell Science, vol. 125, no. 3, pp. 603-613, 2012.
    [112] F. Variola, "Atomic force microscopy in biomaterials surface science," Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 2950-2959, 2015.
    [113] N. Gavara, "Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells," Scientific reports, vol. 6, p. 21267, 2016.
    [114] Y. W. Chen, "鈣鈦礦運用於RRAM的劣化與切換特性探討(暫訂)," Master's Thesis, Department of Materials Science and Engineering, National Cheng Kung University, 2020.
    [115] S. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, and S. Yunus, "Thickness and elastic modulus of plasma treated PDMS silica-like surface layer," Langmuir, vol. 26, no. 5, pp. 3372-3375, 2010.
    [116] M. E. Dokukin and I. Sokolov, "On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth," Macromolecules, vol. 45, no. 10, pp. 4277-4288, 2012.
    [117] C. A. Kaiser, M. Krieger, H. Lodish, and A. Berk, Molecular cell biology. WH Freeman, 2007.
    [118] B. Pontes, P. Monzo, and N. C. Gauthier, "Membrane tension: A challenging but universal physical parameter in cell biology," in Seminars in cell & developmental biology, 2017, vol. 71: Elsevier, pp. 30-41.
    [119] J. R. Lange and B. Fabry, "Cell and tissue mechanics in cell migration," Experimental cell research, vol. 319, no. 16, pp. 2418-2423, 2013.
    [120] H. Valentová and J. Stejskal, "Mechanical properties of polyaniline," Synthetic Metals, vol. 160, no. 7-8, pp. 832-834, 2010.
    [121] M. A. Nieto, R. Y.-J. Huang, R. A. Jackson, and J. P. Thiery, "EMT: 2016," Cell, vol. 166, no. 1, pp. 21-45, 2016.
    [122] S. Iyer, R. Gaikwad, V. Subba-Rao, C. Woodworth, and I. Sokolov, "Atomic force microscopy detects differences in the surface brush of normal and cancerous cells," Nature nanotechnology, vol. 4, no. 6, pp. 389-393, 2009.
    [123] A. C. Chang, J.-D. Liao, and B. H. Liu, "Practical assessment of nanoscale indentation techniques for the biomechanical properties of biological materials," Mechanics of Materials, vol. 98, pp. 11-21, 2016.

    無法下載圖示 校內:2025-06-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE