簡易檢索 / 詳目顯示

研究生: 黃祥龍
Augustin, Fernando
論文名稱: 半導體和氧化還原活性的鈦-有機簇及其電化學性質
Semiconducting and Redox-active Titanium–Organic Clusters and Their Electrochemical Properties
指導教授: 柯碧蓮
Kaveevivitchai, Watchareeya
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 118
中文關鍵詞: 鋰離子電池陰極金屬有機材料金屬氧簇
外文關鍵詞: Lithium-ion batteries, Titanium, Cathode, Metal‒organic materials, Metal-oxo clusters
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從Fujishima和Honda等人發現二氧化鈦在紫外線下具有光催化特性以來,對現有和新型鈦化合物的研究引起了極大的關注;自那時以來,鈦衍生材料在催化 ,儲能和生物醫學等領域得到了廣泛應用。雖然二氧化鈦衍生化合物因低成本、蘊藏豐富、輕量和無毒性而在商業上取得成功,但因其低電子和離子導電性,以及Ti4+/Ti3+氧化還原對的低電位,它們並未在儲能領域得到廣泛應用。
    在此,我們合成了兩種新型鈦‒有機化合物,Ti6O6L8(DMF)8 (NCKU-1)和Ti6O9L6(DMF)2(Prop)2 (NCKU-2) (LH4=1,4-dicyano-2,3,5,6-tetrahydroxybenzene,Prop = propionate,DMF = N',N'-dimethylformamide)。以這種類型的配位基分子來說,特別的是它沒有形成配位高分子,而是金屬氧簇。LH4經歷了氧化和脫質子化再與金屬配位,經由測量兩種化合物中L配位基的鍵長顯示出鄰苯醌類結構。具氧化還原活性的苯醌類配位基L通過鍵的電荷轉移促進了電荷離域。這些材料的半導體導電性比二氧化鈦高出三個數量級。作為鋰離子電池的陰極時,兩種材料在0.5 A g−1 的電流密度下,NCKU-1和NCKU-2分別顯示出240 mAh g−1 和260 mAh g−1的初始容量。在高達64 A g −1的電流密度下,NCKU-1和NCKU-2分別穩定地保持60 mAh g−1和90 mAh g−1的電容量,表現優異的氧化還原動力學,歸因於其導電性和易被接觸的氧化還原位點。重要的是,兩種化合物皆顯示出異常高的Ti3+/Ti4+氧化還原電位(NCKU-1和NCKU-2分別為3.2 V和2.7 V相對於Li/Li+),適合應用於正極材料。

    Since the discovery of the photocatalytic property of titanium dioxide (TiO2) under ultraviolet light by Fujishima and Honda et al., much attention has been brought to existing and novel titanium-based compounds, which have shown a wide range of applications in the field of catalysis, energy storage, and biomedical applications. While TiO2-derived compounds remain commercially successful due to their low cost, abundance, lightweight, and non-toxicity, they are not widely utilized in the field of energy storage due to their low electrical and ionic conductivity as well as the low redox potential of the Ti4+/Ti3+ couples.
    Herein, we report two new titanium-based organometallic compounds, Ti6O6L8(DMF)8 (NCKU-1) and Ti6O9L6(DMF)2(Prop)2 (NCKU-2) (LH4=1,4-dicyano-2,3,5,6-tetrahydroxybenzene, Prop = propionate, DMF = N',N'-dimethylformamide). Unusually, instead of forming infinite networks, oxygen-bridged titanium clusters coordinated by ligand L are built. The ligand LH4 undergoes subsequent oxidation and deprotonation before coordinating with the metal; bond lengths measured on the coordinated ligand in both compounds reveal an o-quinoid-type structure. The redox-active quinonoid ligand L promotes through-bond charge transfer, leading to strong charge delocalization. The improved electron transfer of these materials leads to semiconducting behaviors, exhibiting electrical conductivity that is approximately 103 greater than that of bulk TiO2. When used as a cathode for lithium-ion batteries at the current density of 0.5 A g−1, both materials show high initial capacities of 240 mAh g−1 and 260 mAh g−1 for NCKU-1 and NCKU-2, respectively. In addition, both compounds can undergo battery cycling at a current density as high as 64 A g−1 with a stable capacity of 60 mAh g−1 for NCKU-1 and 90 mAh g−1 for NCKU-2. These results show the excellent redox kinetics of Ti-cluster materials, which is enabled by their improved electrical conductivity and highly accessible redox sites. Noteworthy, both compounds display unusually high Ti3+/Ti4+ redox potentials (3.2 and 2.7 V vs. Li/Li+ for NCKU-1 and NCKU-2, respectively), suitable to be applied as cathode materials.

    摘要 II Abstract III Acknowledgments V Table of Contents VII List of Figures X List of Tables XV Chapter 1 Introduction 1.1 Background 1 1.2 Lithium-ion Batteries 3 1.3 Organic Cathode Materials 10 1.4 Coordination Compound 12 1.5 Titanium-based Materials 13 1.6 Motivation 16 1.7 List of Terms 18 Chapter 2 Methods and Instrumentations 2.1 Materials 21 2.2 Instrumentations 24 2.2.1 Single-Crystal X-ray Diffractometer (SC-XRD) 24 2.2.2 Powder X-ray Diffractometer (PXRD) 25 2.2.3 Fourier-transform Infrared Spectrometer (FT-IR) 25 2.2.4 Thermogravimetric Analyzer (TGA) 25 2.2.5 Ultraviolet–Visible Absorption Spectrometer (UV–Vis) 26 2.2.6 Electron Paramagnetic Resonance (EPR) Spectrometer 26 2.2.7 Nuclear Magnetic Resonance (NMR) 26 2.2.8 X-ray Photoelectron Spectroscopy (XPS) 27 2.2.9 Ultraviolet Photoelectron Spectroscopy (UPS) 27 2.2.10 Four-Point Probe Resistivity Measurement 27 2.2.11 Electrochemical Studies 28 2.3 Synthesis of LH4 29 2.4 Synthesis of Titanium Coordination Compounds 30 2.4.1 Solvent Screening 30 2.4.2 Preparation of NCKU-1 Single Crystal 32 2.4.3 Preparation of NCKU-2 Single Crystals 34 2.5 Scaled-up Synthesis of Ti-LH4 Coordination Compounds 36 Chapter 3 Material Characterization 3.1 Structure of Ti-L Clusters 38 3.2 FT-IR 46 3.3 TGA 47 3.4 Solubility 48 3.5 Band Structure 50 3.5.1 Optical Property 50 3.5.2 UPS 55 3.6 Electrical Conductivity 58 Chapter 4 Electrochemical Application 4.1 Optimization of Battery Operating Parameters 62 4.1.1 Optimization of Electrolyte System 63 4.1.2 Optimization of Current Collector 67 4.1.3 Optimization of Voltage Window 69 4.2 Electrochemical Investigation 72 4.3 Investigation of Electrochemical Kinetics 79 4.4 Mechanistic Studies 87 4.4.1 Ex-situ XPS 87 4.4.2 Ex-Situ FT-IR 89 4.4.3 Proposed RedoxMechanism 91 Chapter 5 Conclusion References 94

    (1) UN Climate Change Conference - United Arab Emirates. https://unfccc.int/cop28 (accessed 2024 28 April).
    (2) Mehmet Kanoglu , Y. A. C., John M. Cimbala Renewable Energy, Second Edition; CRC Press, 2017. DOI: 10.1201/9781315116570.
    (3) Osman, A. I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D. W.; Yap, P.-S. Cost, Environmental Impact, and Resilience of Renewable Energy Under a Changing Climate: A Review. Environ. Chem. Lett. 2023, 21, 741–764.
    (4) Energy Storage Innovation to Combat Climate Change. https://www.energy.gov/oe/articles/energy-storage-innovation-combat-climate-change (accessed 2024 4 May).
    (5) Kalyani, N. T.; Dhoble, S. J. Chapter 19 - Energy Materials: Applications and Propelling Opportunities. In Energy Materials, Dhoble, S. J., Kalyani, N. T., Vengadaesvaran, B., Kariem Arof, A. Eds.; Elsevier, 2021; pp 567–580.
    (6) Yoshio Nishi. https://www.nae.edu/105800/Yoshio-Nishi (accessed 2024 28 April).
    (7) The Nobel Prize in Chemistry 2019. https://www.nobelprize.org/prizes/chemistry/2019/summary/ (accessed 2024 4 May).
    (8) Ding, Y.; Cano, Z. P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28.
    (9) Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308.
    (10) Horiba, T.; Maeshima, T.; Matsumura, T.; Koseki, M.; Arai, J.; Muranaka, Y. Applications of High Power Density Lithium-Ion Batteries. J. Power Sources 2005, 146, 107–110.
    (11) Manthiram, A. Materials Challenges and Opportunities of Lithium Ion Batteries. J. Phys. Chem. Lett. 2011, 2, 176–184.
    (12) El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V. A.; Fichtner, M. Exploits, Advances and Challenges Benefiting Beyond Li-Ion Battery Technologies. J. Alloys Compd. 2020, 817, 153261–153287.
    (13) Kaveevivitchai, W.; Jacobson, A. J. High Capacity Microporous Molybdenum–Vanadium Oxide Electrodes for Rechargeable Lithium Batteries. Chem. Mater. 2013, 25, 2708–2715.
    (14) Lung-Hao Hu, B.; Wu, F.-Y.; Lin, C.-T.; Khlobystov, A. N.; Li, L.-J. Graphene-Modified LiFePO4 Cathode for Lithium Ion Battery Beyond Theoretical Capacity. Nat. Commun. 2013, 4, 1687.
    (15) Zuo, C.; Hu, Z.; Qi, R.; Liu, J.; Li, Z.; Lu, J.; Dong, C.; Yang, K.; Huang, W.; Chen, C.; Song, Z.; Song, S.; Yu, Y.; Zheng, J.; Pan, F. Manganese Spinel: Double the Capacity of Manganese Spinel for Lithium-Ion Storage by Suppression of Cooperative Jahn–Teller Distortion. Adv. Energy Mater. 2020, 10, 2070141.
    (16) Song, Z.; Qian, Y.; Liu, X.; Zhang, T.; Zhu, Y.; Yu, H.; Otani, M.; Zhou, H. A Quinone-Based Oligomeric Lithium Salt for Superior Li–Organic Batteries. Energy Environ. Sci. 2014, 7, 4077–4086.
    (17) Kim, K. C. Design Strategies for Promising Organic Positive Electrodes in Lithium-Ion Batteries: Quinones and Carbon Materials. Ind. Eng. Chem. Res. 2017, 56, 12009–12023.
    (18) Wu, M.-S.; Luu, N. T. H.; Chen, T.-H.; Lyu, H.; Huang, T.-W.; Dai, S.; Sun, X.-G.; Ivanov, A. S.; Lee, J.-C.; Popovs, I.; Kaveevivitchai, W. Supramolecular Self-Assembled Multi-Electron-Acceptor Organic Molecule as High-Performance Cathode Material for Li-Ion Batteries. Adv. Energy Mater. 2021, 11, 2100330.
    (19) Wu, Y.; Zeng, R.; Nan, J.; Shu, D.; Qiu, Y.; Chou, S.-L. Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Adv. Energy Mater. 2017, 7, 1700278.
    (20) Nisula, M.; Karppinen, M. In Situ Lithiated Quinone Cathode for ALD/MLD-Fabricated High-Power Thin-Film Battery. J. Mater. Chem. A 2018, 6, 7027–7033.
    (21) IUPAC Compendium of Chemical Terminology. 3.0.1 ed.; International Union of Pure and Applied Chemistry (IUPAC), 2019.
    (22) Shen, D.; Sha, Y.; Chen, C.; Chen, X.; Jiang, Q.; Liu, H.; Liu, W.; Liu, Q. A One-Dimensional Cobalt-Based Coordination Polymer as a Cathode Material of Lithium-Ion Batteries. Dalton Trans. 2023, 52, 7079–7087.
    (23) Wilkinson, D.; Bhosale, M.; Amores, M.; Naresh, G.; Cussen, S. A.; Cooke, G. A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries. ACS Appl. Energy Mater. 2021, 4, 12084–12090.
    (24) Li, A.-C.; Chang, C.-H.; Ivanov, A. S.; Lo, Y.-A.; Popovs, I.; Chen, J.-L.; Chuang, Y.-C.; Chang, Y.-C.; Chen, B.-H.; Lee, J.-C.; Chen, T.-H.; Kaveevivitchai, W. Superior Performance Enabled by Supramolecular Interactions in Metal−Organic Cathode: The Power of Weak Bonds. J. Mater. Chem. A 2022, 10, 19671–19679.
    (25) Chang, C.-H.; Li, A.-C.; Popovs, I.; Kaveevivitchai, W.; Chen, J.-L.; Chou, K.-C.; Kuo, T.-S.; Chen, T.-H. Elucidating Metal and Ligand Redox Activities of a Copper-Benzoquinoid Coordination Polymer as the Cathode for Lithium-Ion Batteries. J. Mater. Chem. A 2019, 7, 23770–23774.
    (26) Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013.
    (27) Mendes, R. F.; Almeida Paz, F. A. Transforming Metal–Organic Frameworks Into Functional Materials. Inorg. Chem. Front. 2015, 2, 495–509.
    (28) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38.
    (29) Zhang, Y.; Tang, Y.; Li, W.; Chen, X. Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. ChemNanoMat 2016, 2, 764–775.
    (30) Shi, H.; Shi, C.; Jia, Z.; Zhang, L.; Wang, H.; Chen, J. Titanium Dioxide-Based Anode Materials for Lithium-Ion Batteries: Structure and Synthesis. RSC Adv. 2022, 12, 33641–33652.
    (31) Van Cleave, C.; Crans, D. C. The First-Row Transition Metals in the Periodic Table of Medicine. Inorganics 2019, 7, 111.
    (32) Gutierrez, A.; Benedek, N. A.; Manthiram, A. Crystal-Chemical Guide for Understanding Redox Energy Variations of M2+/3+ Couples in Polyanion Cathodes for Lithium-Ion Batteries. Chem. Mater. 2013, 25, 4010–4016.
    (33) Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. Chem. Rec. 2018, 18, 459–479.
    (34) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. The Nasicon-type Titanium Phosphates ATi2(PO4)3 (A=Li, Na) As Electrode Materials. Solid State Ion. 1988, 28-30, 419–423.
    (35) Rangaswamy, P.; Suresh, G. S.; Mahadevan, M. K. Comprehensive Electrochemical Studies of Tavorite LiTiPO4F/C Electrode for Rechargeable Lithium Ion Battery. ChemistrySelect 2016, 1, 1472–1483.
    (36) Fedotov, S. S.; Luchinin, N. D.; Aksyonov, D. A.; Morozov, A. V.; Ryazantsev, S. V.; Gaboardi, M.; Plaisier, J. R.; Stevenson, K. J.; Abakumov, A. M.; Antipov, E. V. Titanium-Based Potassium-Ion Battery Positive Electrode with Extraordinarily High Redox Potential. Nat. Commun. 2020, 11, 1484.
    (37) Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M. R. Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater. 2011, 23, 4109–4111.
    (38) Kishore, B.; G, V.; Munichandraiah, N. K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries. J. Electrochem. Soc. 2016, 163, A2551.
    (39) Wu, C.; Kopold, P.; Ding, Y.-L.; van Aken, P. A.; Maier, J.; Yu, Y. Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. ACS Nano 2015, 9, 6610–6618.
    (40) Han, J.; Niu, Y.; Bao, S.-j.; Yu, Y.-N.; Lu, S.-Y.; Xu, M. Nanocubic KTi2(PO4)3 Electrodes for Potassium-Ion Batteries. Chem. Commun. 2016, 52, 11661–11664.
    (41) Recham, N.; Chotard, J. N.; Jumas, J. C.; Laffont, L.; Armand, M.; Tarascon, J. M. Ionothermal Synthesis of Li-Based Fluorophosphates Electrodes. Chem. Mater. 2010, 22, 1142–1148.
    (42) Yang, A.; Wang, X.; Lu, Y.; Miao, L.; Xie, W.; Chen, J. Core-Shell Structured 1,4-Benzoquinone@TiO2 Cathode for Lithium Batteries. J. Energy Chem. 2018, 27, 1644–1650.
    (43) Jiang, C.; Hosono, E.; Zhou, H. Nanomaterials for Lithium Ion Batteries. Nano Today 2006, 1, 28–33.
    (44) Hou, J.; Huang, N.; Acharya, D.; Liu, Y.; Zhu, J.; Teng, J.; Wang, Z.; Qu, K.; Zhang, X.; Sun, D. All-Catecholate-Stabilized Black Titanium-Oxo Clusters for Efficient Photothermal Conversion. Chem. Sci. 2024, 15, 2655–2664.
    (45) Gao, M.-Y.; Wang, Z.; Li, Q.-H.; Li, D.; Sun, Y.; Andaloussi, Y. H.; Ma, C.; Deng, C.; Zhang, J.; Zhang, L. Black Titanium-Oxo Clusters with Ultralow Band Gaps and Enhanced Nonlinear Optical Performance. J. Am. Chem. Soc. 2022, 144, 8153–8161.
    (46) Fu, S.-Y.; Chang, C.-H.; Ivanov, A. S.; Popovs, I.; Chen, J.-L.; Liao, Y.-F.; Liu, H.-K.; Chirra, S.; Chiang, Y.-W.; Lee, J.-C.; Liu, W.-L.; Kaveevivitchai, W.; Chen, T.-H. Mixed-Valence CuI/CuIII Metal–Organic Frameworks with Non-innocent Ligand for Multielectron Transfer. Angew. Chem. Int. Ed. 2023, 62, e202312494.
    (47) Atzori, M.; Marchiò, L.; Clérac, R.; Serpe, A.; Deplano, P.; Avarvari, N.; Mercuri, M. L. Hydrogen-Bonded Supramolecular Architectures Based on Tris(Hydranilato)Metallate(III) (M = Fe, Cr) Metallotectons. Cryst. Growth Des. 2014, 14, 5938–5948.
    (48) Atzori, M.; Pop, F.; Auban-Senzier, P.; Gómez-García, C. J.; Canadell, E.; Artizzu, F.; Serpe, A.; Deplano, P.; Avarvari, N.; Mercuri, M. L. Structural Diversity and Physical Properties of Paramagnetic Molecular Conductors Based on Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the Tris(chloranilato)ferrate(III) Complex. Inorg. Chem. 2014, 53, 7028–7039.
    (49) Jurić, M.; Molčanov, K.; Žilić, D.; Kojić-Prodić, B. From Mononuclear to Linear One-Dimensional Coordination Species of Copper(ii)–Chloranilate: Design and Characterization. RSC Adv. 2016, 6, 62785–62796.
    (50) Peng, W.-C.; Chen, Y.-C.; He, J.-L.; Ou, S.-L.; Horng, R.-H.; Wuu, D.-S. Tunability of P- and N-Channel TiOx Thin Film Transistors. Sci. Rep. 2018, 8.
    (51) Gao, X.; Wang, Y.; Menezes, L. T.; Huang, Z.; Kleinke, H.; Li, Y. Stable 2,5-Dihydroxy-1,4-benzoquinone Based Organic Cathode Enabled by Coordination Polymer Formation and Binder Optimization. Adv. Funct. Mater. 2024, 34, 2315669.
    (52) Zhu, J.; Li, P.-Z.; Guo, W.; Zhao, Y.; Zou, R. Titanium-Based Metal–Organic Frameworks for Photocatalytic Applications. Coord. Chem. Rev. 2018, 359, 80–101.
    (53) Castells-Gil, J.; Almora-Barrios, N.; Lerma-Berlanga, B.; Padial, N. M.; Martí-Gastaldo, C. Chemical Complexity for Targeted Function in Heterometallic Titanium–Organic Frameworks. Chem. Sci. 2023, 14, 6826–6840.
    (54) He, Y.-P.; Yuan, L.-B.; Chen, G.-H.; Lin, Q.-P.; Wang, F.; Zhang, L.; Zhang, J. Water-Soluble and Ultrastable Ti4L6 Tetrahedron with Coordination Assembly Function. J. Am. Chem. Soc. 2017, 139, 16845–16851.
    (55) Sousa, C.; Illas, F. Ionic-Covalent Transition in Titanium Oxides. Phys. Rev. B 1994, 50, 13974–13980.
    (56) Liu, J.-X.; Gao, M.-Y.; Fang, W.-H.; Zhang, L.; Zhang, J. Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angew. Chem. Int. Ed. 2016, 55, 5160–5165.
    (57) Whitten, J. E. Ultraviolet Photoelectron Spectroscopy: Practical Aspects and Best Practices. Appl. Surf. Sci. Adv. 2023, 13, 100384.
    (58) Sonström, A.; Boldrini, B.; Werner, D.; Maichle-Mössmer, C.; Rebner, K.; Casu, M. B.; Anwander, R. Titanium(IV) Surface Complexes Bearing Chelating Catecholato Ligands for Enhanced Band-Gap Reduction. Inorg. Chem. 2023, 62, 715–729.
    (59) Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; Fenoll, M.; Dindar, A.; Haske, W.; Najafabadi, E.; Khan, T. M.; Sojoudi, H.; Barlow, S.; Graham, S.; Brédas, J.-L.; Marder, S. R.; Kahn, A.; Kippelen, B. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332.
    (60) Bhattacharya, B.; Layek, A.; Mehboob Alam, M.; Maity, D. K.; Chakrabarti, S.; Ray, P. P.; Ghoshal, D. Cd(II) Based Metal–Organic Framework Behaving as a Schottky Barrier Diode. Chem. Commun. 2014, 50, 7858–7861.
    (61) Muller, R. S.; Kamins, T. I. Device Electronics for Integrated Circuits; Wiley, 2002.
    (62) Zhu, Q.-Y.; Dai, J. Titanium Oxo/Alkoxyl Clusters Anchored With Photoactive Ligands. Coord. Chem. Rev. 2021, 430, 213664.
    (63) Biswas, P.; Ainabayev, A.; Zhussupbekova, A.; Jose, F.; O’Connor, R.; Kaisha, A.; Walls, B.; Shvets, I. V. Tuning of Oxygen Vacancy-Induced Electrical Conductivity in Ti-Doped Hematite Films and its Impact on Photoelectrochemical Water Splitting. Sci. Rep. 2020, 10, 7463.
    (64) Chen, J.-J.; Symes, M. D.; Fan, S.-C.; Zheng, M.-S.; Miras, H. N.; Dong, Q.-F.; Cronin, L. High-Performance Polyoxometalate-Based Cathode Materials for Rechargeable Lithium-Ion Batteries. Adv. Mater. 2015, 27, 4649–4654.
    (65) Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X.-Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y.; Chen, L. A Redox-Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angew. Chem. Int. Ed. 2020, 59, 5273–5277.
    (66) Cook, J. B.; Kim, H.-S.; Lin, T. C.; Lai, C.-H.; Dunn, B.; Tolbert, S. H. Pseudocapacitive Charge Storage in Thick Composite MoS2 Nanocrystal-Based Electrodes. Adv. Energy Mater. 2017, 7, 1601283.
    (67) Gogotsi, Y.; Penner, R. M. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083.
    (68) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211.
    (69) Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide. J. Electrochem. Soc. 1998, 145, 1882.
    (70) Ren, W.; Qin, M.; Zhu, Z.; Yan, M.; Li, Q.; Zhang, L.; Liu, D.; Mai, L. Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. Nano Lett. 2017, 17, 4713–4718.
    (71) Lee, Y.-S.; Ryu, K.-S. Study of the Lithium Diffusion Properties and High Rate Performance of TiNb6O17 as an Anode in Lithium Secondary Battery. Sci. Rep. 2017, 7, 16617.

    無法下載圖示 校內:2029-07-19公開
    校外:2029-07-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE