| 研究生: |
黃巧婷 Huang, Chiao-Ting |
|---|---|
| 論文名稱: |
木質建材塗裝對調濕性能之影響 Effect of Finishing Coatings on Moisture Buffering Performance of Wood Materials |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 調濕建材 、塗料 、膜厚 、調濕值 |
| 外文關鍵詞: | Moisture Buffering Material, coating, film thickness, Moisture Buffer Value |
| 相關次數: | 點閱:136 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣本島扣除高山地區之後,各地年平均相對濕度均在75%以上,屬於高濕環境。過高的濕氣環境會影響人體的舒適度與健康,並導致建材的腐朽破壞等問題,而控制室內濕氣,除了使用空調系統外,利用多孔質建材對室內環境進行濕度調節的「被動式」控制手法逐漸受到矚目。
木質建材作為調濕建材,不但可以提高生活品質,還能夠減輕環境負荷。在室內裝修中,通常會在木質建材表面上施作塗料以保護建材。然而木質建材塗裝後的調濕效果,卻甚少研究提及。
本研究探討市面上常見的木質建材-南美柚木以及雲杉,經由木蠟油、水性塗料、NC塗料以及PU塗料塗裝後,對調濕性能造成之影響,根據ISO 24353: 2008與CNS 15200-1-7分別對材料的調濕性能以及膜厚進行測試與資料分析。研究結果如下:
(一) 南美柚木與雲杉試材,塗裝吸濕量比未塗裝吸濕量的比值反映出,木蠟油塗裝對木質建材吸濕量影響最小,比值為0.7到0.8;影響較小為水性塗料試材,比值為0.4到0.5;影響最多為PU塗料試材,比值為0.2到0.3;而以NC塗料試材落差較大,介於0.2-0.6之間。
(二) 以日本建材測試中心吸放濕量評價基準來評估試材調濕性能,除了木蠟油試材在第6小時及第12小時進入等級1之外,其餘塗裝試材皆未達評價基準。如以MBV評估試材調濕性能,以木蠟油試材和水性塗料試材評估結果為「佳」,其餘試材評估結果皆在「普通」以下,顯示木蠟油及水性塗料試材,調濕能力較佳。
(三) 塗膜厚度與吸濕量呈現高度相關,其中以南美柚木NC塗料試材與木蠟油試材最為明顯,R2值分別為0.8617與0.9517,顯示膜厚越厚,吸濕量越少。但雲杉NC塗料試材,同樣膜厚5μm,吸濕量的差異卻達到30 g/m2,推測為塗料成膜狀況不佳,因此塗裝時,須特別注意成膜的品質。
According to Central Weather Bureau of Taiwan, the monthly average relative humidity (RH) for the major cities in Taiwan is over 70%. High humidity will have effects not only on users’ comfort and health, but also on the corrosion of building materials. Therefore, to develop the strategy to cope with the high RH environment in Taiwan is necessary.
Moisture buffering materials, which are porous building materials, are potential for the reduction of RH peaks. Moisture buffering materials can be regarded as a passive design method used to control the indoor RH. However, in the real situation, most of the moisture buffering materials, like wood materials, will be treated with coatings for protection and decoration purposes. Few study discussed about the effect of finishing coatings on the performance of the moisture buffering materials.
In this study, the moisture buffer capacity of two wood materials, Basralokus and Spruce, with coating are investigated. Four types of coating are applied on wood materials, including wax, PU coating, NC coating, and water-borne coating. The test procedures are followed by ISO 24353 and CNS 15200-1-7. The results show that substrates with wax have the best moisture buffer capacity of all. Besides, film thickness and the conditions of surface film might also have influence on moisture buffer capacity of the materials.
1.中央氣象局(2010)。中央氣象局1981-2010氣象統計資料。取自www.cwb.gov.tw。
2.王松永(2003)。木質環境材料科學。國立編譯館。
3.王松永(2005)。綠建築中的建材-木質材料。科學發展月刊,389,21-27。
4.行政院農業委員會林業試驗所(2013)。2003-2013台灣主要林產品貿易統計。林業叢刊。第258號。
5.洪崇(1998)。室內與室外空氣污染對學童呼吸道健康影響之研究。高雄醫學大學學位論文。
6.陳旭源,王松永,林法勤(2000)。台灣南部地區D型原木住宅室內溫濕度變化與其隔熱效能。中華林學季刊,33(3),398-408。
7.黃泓元(2015)。室內裝修碳足跡評估之研究。國立成功大學建築學系碩士論文。
8.經濟部工業局(1995)。工業減廢技術手冊3-塗料工業及塗裝工程。經濟部工業局。
9.經濟部標準檢驗局(2007)。CNS15200 1-7 塗料一般試驗方法第1-7部:通則-膜厚測定。中華民國國家標準。經濟部。
10.經濟部標準檢驗局(1954)。CNS 452木材含水率試驗法。中華民國國家標準。經濟部。
11.葉育君(2015)。調濕建材應用於住宅室內空間之性能預測與評估。國立成功大學建築研究所博士論文。
12.蔡耀賢,江哲銘(2009)。台灣氣候下室內調濕建材之適用性探討。建築學報,第69 期,pp. 35~50。
13.蔡耀賢,江哲銘,鍾松晉(2010)。各種調濕建材之性能測試與評估。建築學報,第74期增刊,pp. 1~14.。
14.蔡馨億(2013)。熱濕氣候下室內常用建材調濕能力與黴菌生長之研究。國立宜蘭大學土木工程學系。
15.大畑敬,河村敬(2012)。各種建築材料の基本的吸放湿性能の評価。島根県産業技術センター研究報告,第48号。
16.山口信,村村上聖,富来礼次,岡本則子(2014)。多機能内装建材としての用途を想定したポーラスモルタルの機能的特性。Cement Science and Concrete Technology,Vol.68。
17.日本建築学会編 (2006)。湿気物性に関する測定規準。同解説―日本建築学会環境基準 AIJES‐H001‐2006。
18.李明香,尾崎明仁(2012)。厚板赤松の温湿度特性を利用した断熱気密住宅の室内環境解析。日本建築学会環境系論文集,第77巻第682号,967-976。
19.近藤精一,石川達夫,阿部郁夫(2001)。吸着の科学第二版:丸善。
20.福水浩史,北村子,横山茂(2005)。アロフェン系調湿建材に関する研究―調湿建材の材料設計。環境資源工学,52,128–135。
21.Abadie, M. O., & Mendonça, K. C. (2009). Moisture performance of building materials: From material characterization to building simulation using the Moisture Buffer Value concept. Building and Environment, 44(2), 388-401.
22.Anthony V. Arundel, E. M. S., Judith H. Biggin, and Theodor D. Sterling. (1986). Indirect Health Effects of Relative Humidity in Indoor Environments. Environmental Health Perspectives, Vol. 65, pp. 351-361.
23.Avramidis, S. (1997) The basics of sorption. International Conference of COST Action E8, Mechanical Performance of Wood and Wood Products. Theme: Wood-Water Relations. Copenhagen, Denmark, June 16 -17.
24.Bart, M., Moissette, S., Ait Oumeziane, Y., & Lanos, C. (2014). Transient hygrothermal modelling of coated hemp-concrete walls. European Journal of Environmental and Civil Engineering, 18(8), 927-944.
25.Collet, F., Chamoin, J., Pretot, S., & Lanos, C. (2013). Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings, 62, 294-303.
26.Dubois, S., McGregor, F., Evrard, A., Heath, A., & Lebeau, F. (2014). An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a Moisture Buffer Value test. Building and Environment, 81, 192-203.
27.Gómez, I., Guths, S., Souza, R., Millan, J. A., Martín, K., & Sala, J. M. (2011). Moisture buffering performance of a new pozolanic ceramic material: Influence of the film layer resistance. Energy and Buildings, 43(4), 873-878.
28.Hannu Viitanen, K. S., Tuomo Ojanen, Ruut Peuhkuri, Leena Paajanen, Kimmo Lähdesmäki. (2010). Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of Building Physics, 33, 201-224.
29.ISO 24353: 2008. Hygrothermal performance of building materials and products determination of moisture adsorption/desorption properties in response to humidity variation. Geneva, Switzerland: International Organization for Standardization; 2008.
30.Janssens, A., Woloszyn, M., Rode, C., Sasic-Kalagasidis, A., Paepe, M. De. (2008). From EMPD to CFD – overview of different approaches for Heat Air and Moisture modeling in IEA Annex 41. IEA ECBCS Annex 41 Closing Seminar, Copenhagen, June 19.
31.JIS A 1470-1:2008. Test method of adsorption/desorption efficiency for building materials to regulate an indoor humidity-part 1: response method of humidity. Tokyo, Japan: Japanese Industrial Standards Committee.
32.Latif, E., Tucker, S., Ciupala, M. A., Wijeyesekera, D. C., & Newport, D. (2014). Hygric properties of hemp bio-insulations with differing compositions. Construction and Building Materials, 66, 702-711.
33.McGregor, F., Heath, A., Fodde, E., & Shea, A. (2014). Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Building and Environment, 75, 11-18.
34.McGregor, F., Heath, A., Shea, A., & Lawrence, M. (2014). The moisture buffering capacity of unfired clay masonry. Building and Environment, 82, 599-607.
35.Mortensen, L. H., Rode, C., & Peuhkuri, R. H. (2005). Full scale tests of moisture buffer capacity of wall materials. In G. Johannesson (Ed.), Proceedings of the 7th Symposium on Building Physics in the Nordic Countries. (Vol. Volume 2, pp. 662-669). Reykjavik, Iceland: The Icelandic Building Research Institute, IBRI.
36.Osanyintola, O. F., Talukdar, P., & Simonson, C. J. (2006). Effect of initial conditions, boundary conditions and thickness on the moisture buffering capacity of spruce plywood. Energy and Buildings, 38(10), 1283-1292.
37.Rode, C, Mitamura, T, Schultz, JM & Padfield, T. (2002). Test Cell Measurements of Moisture Buffer Effects. Building Physics, vol. 2, 619-626.
38.M. Rahim, O. Douzane, A. D. Tran Le, G. Promis, B. Laidoudi, A. Crigny, B. Dupre, T. Langlet, T.(2015). Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy and Buildings 88, 91-99.
39.Ramos, N. M. M., Delgado, J. M. P. Q., & de Freitas, V. P. (2010). Influence of finishing coatings on hygroscopic moisture buffering in building elements. Construction and Building Materials, 24(12), 2590-2597.
40.Rode C, Peuhkuri R, Time B, Svennberg K, Ojanen T. (2007) Moisture buffer value of building material. Journal of ASTM International, 4(5).
41.Rode, C., Reuhkuri, R., Time, B., Gustavsan, A., Ojanen, T., Ahonen, J., and Svennberg, K. (2005). Moisture Buffering of Building Materials, Report BYG-DTU R-126. Report of the Nordisk Innovations Center, Department of Civil Engineering, Technical University of Denmark.
42.Shinji Tomura, M. M., Keichi Inukai, Fumihiko Ohashi, Masaya Suzuki, Yasuo Shibasaki, Shin Suzuki. (1997). Water Vapor Adsorption Property of Various Clays and Related Materials for Applications to Humidity Self-control Materials. Clay Science, 10, 195-203
43.Svennberg, K. (2006). Moisture Buffering in the Indoor Environment. Doctoral Thesis, Lund University.
44.Svennberg, K., Wadsö, L. (2008). Sorption isotherms for textile fabrics, foams and batting used in the indoor environment. The Journal of The Textile Institute, 99(2), 125-132.
45.Svennberg, K. H., Lone Grønbæk; Rode, Carsten. Moisture Buffer Performance of a Fully Furnished Room. in: Proceedings (CD) of the Performance of Exterior Envelopes of Whole Buildings IX International Conference, Clearwater Beach, FL, 2004, 11 pp.
46.Time, B. (1998). Hygroscopic Moisture Transport in Wood. Doctoral Degree, Norwegian University.
47.Wu, P. C., Su, H.J., Lin, C.Y. (2000). Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. . The Science of The Total Environment, 253(1-3), 111-118.