簡易檢索 / 詳目顯示

研究生: 盧建銘
Lu, Jian-Ming
論文名稱: 奈米碳管的挫曲與含水之熱機行為分析
Investigation on thermo-mechanical behaviors of buckling and water-embedded carbon nanotube
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 126
中文關鍵詞: 分子動力學奈米碳管楊氏係數挫曲
外文關鍵詞: molecular dynamics, carbon nanotube, Young`s modulus, buckling
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用分子動力學模擬方法與熱噪音的概念,藉由奈米碳管的熱擾動現象探討其楊氏係數;同時也利用分子動力學模擬方法探討奈米碳管的熱機行為:挫曲變形形態、挫曲應變、楊氏係數等問題,並提出尺度效應進一步分類奈米碳管的挫曲形態;同時也研究水在奈米碳管內部的動態行為,獲得水在奈米碳管內部的最佳幾何位置,以及探討水擴散的機制。
    奈米結構具有熱噪音與量子噪音的現象,由於奈米碳管的自然頻率與系統溫度相較之下,僅考慮熱噪音的影響即可,因此可以藉由分子動力學方法測定奈米碳管懸臂梁端部振幅的熱擾動變異數,再以古典振動力學所獲得的解析形態逆解奈米碳管的楊氏係數。此外,藉由本文所提出的細長比概念,可以藉由應變能密度與壓縮應變的關係分類挫曲變形形態,並進一步確認奈米碳管在奈米尺度下的長柱挫曲、短柱挫曲、雙層效應、多層效應、溫度效應等的特徵,同時也利用加載/卸載的行為獲得奈米碳管的楊氏係數,其結果並與奈米碳管熱擾動時所獲得的楊氏係數吻合。藉由分子動力學模擬方法也可以獲得水奈米碳管內部的動態行為與運動機制,並得知奈米碳管的尺度與溫度效應對於水的動態行為之影響,同時也確定一顆水在奈米碳管內部的最佳幾何位置。

    Using both the molecular dynamics simulation method and the concept of the thermal noise based on nanostructure`s characteristics, the Young`s modulus of a carbon nanotube is investigated under the thermal perturbation phenomenon circumstance. Using the molecular dynamics simulation method again, the thermo-mechanical behaviors, buckling patterns, the buckling strain, and the Young`s modulus of a carbon nanotube are also verified. Further, the buckling patterns of a carbon nanotube are classified by the scaling effects. Meanwhile, the dynamical behaviors of water molecules inside a carbon nanotube are also studies. The optimal geometric position of one water molecule inside a carbon nanotube is proposed. Moreover, the diffusive mechanism of water molecules filled in a carbon nanotube is investigated.
    The both thermal and quantum noise of the nanostructure is natural. Only the thermal noise is able to influence the dynamic behavior of a carbon nanotube herein, owing to the comparison of natural frequency and system temperature. The transverse amplitude`s variance of a cantilever beam of a carbon nanotube`s free end is able to evaluated by the molecular dynamics method. The analytic Young`s modulus of a carbon nanotube is inversely obtained by the closed form of the formula related the Young`s modulus of the transverse amplitude`s variance of a carbon nanotube from the classical vibration mechanics. In addition using the concept of the slenderness ratio, the buckling patterns are classified via the relationship between strain energy density and buckling strain of a carbon nanotube. Further, the nanoscale long-column, short-column, double-layer, multi-layer and temperature effects of a carbon nanotube are confirmed. Meanwhile, the Young`s modulus of a carbon nanotube is evaluated via the loading/unloading behavior of a carbon nanotube. It agrees very much with the former study from the cantilever beam`s free vibration of a carbon nanotube. The both dynamic behaviors and motion mechanism of water molecules inside a carbon nanotube are also investigated by the molecular dynamics simulation method. The both scale and thermal influencing on water molecules filled with a carbon nanotube is proposed. The optimal geometric position of one water molecule inside a carbon nanotube is confirmed in the present study.

    中文摘要…………………………………………………………… I 英文摘要…………………………………………………………… II 誌謝………………………………………………………………… III 圖目錄……………………………………………………………… IX 表目錄……………………………………………………………… XV 第一章 緒論 1-1 研究動機與目的…………………………………………1 1-2 研究背景…………………………………………………3 1-3 本文架構…………………………………………………9 第二章 奈米碳管介紹 2-1 奈米碳管的結構…………………………………………10 2-2 奈米碳管的性質…………………………………………14 2-3 奈米碳管的應用…………………………………………16 2-3-1 場發射器…………………………………………………16 2-3-2 電子元件…………………………………………………19 2-3-3 氣體偵測器………………………………………………20 2-3-4 儲/放氫…………………………………………………20 2-3-5 楊氏模數…………………………………………………22 2-3-6 複合材料…………………………………………………23 第三章 楊氏係數的測定 3-1 熱噪音分析………………………………………………26 3-2 奈觀尺度的位置不確定性………………………………27 3-2-1 簡諧振子…………………………………………………27 3-2-1-1 古典模式分析……………………………………………27 3-2-1-2 量子效應分析……………………………………………28 3-2-2 彈性桿件模式分析………………………………………28 3-2-3 彈性彎曲樑結構模式分析………………………………29 3-3 以熱噪音測定楊氏係數…………………………………30 3-3-1 以分子動力學方法測定熱噪音…………………………30 3-3-2 奈米碳管的楊氏係數……………………………………31 第四章 奈米碳管的挫屈熱機性質分析 4-1 柱體挫屈現象的介紹與應用……………………………35 4-2 柱體的古典挫屈分析……………………………………37 4-3 奈米碳管挫屈的尺度效應………………………………40 4-3-1 細長比的比較……………………………………………40 4-3-2 長柱效應…………………………………………………49 4-3-3 短柱效應…………………………………………………50 4-3-4 雙層效應…………………………………………………51 4-3-5 多層效應…………………………………………………54 4-4 奈米碳管加載/卸載的行為分析…………………………57 4-5 奈米碳管挫屈的溫度效應………………………………60 第五章 含水奈米碳管的動態行為分析 5-1含水奈米碳管的建模……………………………………………61 5-2含水奈米碳管的尺度與溫度效應………………………………64 第六章 含水奈米碳管的動態行為分析 6-1結論…………………………………………………………74 6-2未來的研究方向……………………………………………77 參考文獻……………………………………………………………78 附錄 A 分子動力學模擬方法……………………………………93 A-1 Tersoff勢能……………………………………………………93 A-2 SPCE勢能………………………………………………………97 A-3 TIP3P勢能………………………………………………………98 A-4 ME3Organic勢能………………………………………………99 論文著作……………………………………………………………101 圖目錄 圖2-1 石墨片捲成奈米碳管之示意圖[61]…………………………10 圖2-2 扶手椅形奈米碳管……………………………………………11 圖2-3 鋸齒形奈米碳管………………………………………………11 圖2-4 螺旋形奈米碳管………………………………………………11 圖2-5 雙壁奈米碳管…………………………………………………12 圖2-6 單壁、雙壁以及多壁奈米碳管的構造示意圖………………12 圖2-7 奈米碳管場發射顯示器構造圖[75]…………………………17 圖2-8 奈米碳管場發射背光技術[76]………………………………18 圖2-9 以奈米碳管製程之電晶體type1……………………………19 圖2-10 以奈米碳管製程之電晶體type2……………………………20 圖2-11 氫氣吸附於奈米碳管束之示意圖[93]……………………21 圖2-12 單壁式奈米碳管約在1100K會隨著溫度昇高而軟化[19]…22 圖3-1 簡諧振子示意圖………………………………………………28 圖3-2 彈性桿件模式示意圖…………………………………………29 圖3-3 在變動溫度的條件下,(14, 0)碳管的振幅變異數σ2與碳管長度l3之關係圖,實線表示1500K,長虛線表示1000K,而短虛線表式500K [19, 121-122]………………………………………………31 圖3-4 從(7,0)至(29,0)的楊氏係數分布圖,如圖上空心圓連線所示。圖左上方的符號代表含量子效應的模擬預測,虛線代表單層石墨的楊氏係數,其他符號則是前人所得的實驗或是模擬資料[19, 121-122]……………………………………………………………32 圖3-5 碳管的楊氏係數與碳管結構無關,如圖(5,5)與(9,0)幾乎重疊之例可證。單壁奈米碳管在相對低溫之下,其楊氏係數是常數,亦即其與長度、溫度、手性向量等變數無關,但是它在溫度超過1000k之後則會有軟化的現象[19, 121-122]………………………33 圖3-6 以角度分佈函數確認1100K為單壁奈米碳管的結構變態溫度,圖中實線為(7,0)碳管的角度分佈函數與溫度的關係,長虛線與短虛線方別是(14,0)與(21,0) [19, 121-122]……………………34 圖4-1 挫屈常導致結構體損毀或是意外驟然發生 (a)台北縣中和市秀山國民小學331震災後挫屈的柱基[124];(b)921震災中受損挫屈的集集線鐵軌[125];(c) 瑞典一座挫屈損壞的橋梁[126]………36 圖4-2 簡支撐尤拉柱之挫屈承力狀態變形圖[127]………………37 圖4-3 奈米碳管承受負荷示意圖 (a)單壁[132];(b)雙壁[133];(c)三壁[135] …………………………………………………………41 圖4-4 (5,5)單壁奈米碳管的應變能與應變之變化圖(0 K)………42 圖4-5 (5,5)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(0 K)……………………………………………43 圖4-6 (10,10)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(0 K)……………………………………………43 圖4-7 (15,15)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(0 K)……………………………………………44 圖4-8 奈米碳管應變能密度與應變關係圖(0 K) (a)細長比SR=1.8;(b)細長比SR=3.6……………………………………………44 圖4-9 (5,5)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(1 K)……………………………………………45 圖4-10 (10,10)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(1 K) ………………………………………45 圖4-11 (15,15)單壁奈米碳管 (a)總應變能與應變關係圖;(b)應變能密度與應變關係圖(1 K)…………………………………………46 圖4-12 奈米碳管應變能密度與應變關係圖(1 K) (a)細長比SR=1.0(1 K); (b)細長比SR=1.8(0 K) ……………………………………46 圖4-13 長柱之奈米碳管挫屈形態圖 (a)前挫屈形態;(b)挫屈發生期間之形態;(c)後挫屈形態…………………………………………49 圖4-14 短柱之奈米碳管挫屈形態圖 (a)未受負荷之形態;(b)挫屈發生期間之形態Ⅰ(杯狀頸縮); (c)挫屈發生期間之形態Ⅱ(單側扭結);(d )後挫屈形態………………………………………………51 圖4-15 長雙層之雙壁(5,5)@(10,10)奈米碳管挫屈形態圖 (a)前挫屈形態;(b)挫屈發生期間之形態;(c)後挫屈形態………………52 圖4-16 短雙層之雙壁(5,5)@(10,10)奈米碳管挫屈形態圖 (a)前挫屈形態;(b)挫屈發生期間之形態I;(c)挫屈發生期間之形態II;(d)後挫屈形態………………………………………………………53 圖4-17 單壁(5,5)與(10,10)以及雙壁(5,5)@(10,10)之總應變能與應變關係圖……………………………………………………………53 圖4-18 單壁、雙壁和三壁奈米碳管的挫屈應變與細長比之關係圖…………………………………………………………………55 圖4-19 單壁、雙壁和三壁奈米碳管的挫屈應變與有效長度之關係圖. …………………………………………………………………55 圖4-20 雙壁奈米碳管(5,5)@(10,10)和(10,10)@(15,15)及三壁奈米碳管(5,5)@(10,10)@(15,15)的楊氏係數與長度關係圖…………58 圖4-21 各種不同型態的單壁以及多壁奈米碳管之楊氏係數與管徑關係圖………………………………………………………………58 圖4-22 單壁奈米碳管在各種固定條件之應變能與應變之關係圖,其模擬條件分別設定為1、2、3、4層,其附圖為發生挫屈時的局部放大圖………………………………………………………59 圖4-23 (5,5)單壁奈米碳管的應變能與應變之變化圖(300 K) …60 圖5-1 (a)不含水奈米碳管的示意圖(對照組);(b) 水置在奈米碳管底部的示意圖;(c) 水置在奈米碳管中間的示意圖(以(6,6)的奈米碳管為例) ………………………………………………………… 61 圖5-2 三角立柱狀的9顆水分子的排列示意圖……………………62 圖5-3 奈米碳管兩端部距離的平均值與系統溫度之關係圖 (a)不含水 (對照組;黑線與藍線分為10萬與50萬步階);(b) 1顆水(10萬步階);(c) 125顆水(10萬步階) (均以10nm的(5,5)奈米碳管為例)…………………………………………………………………………64 圖5-4 含1顆水的(5,5)碳管懸臂梁尖端振動圖(1K,50萬步階)…………………………………………………………………………65 圖5-5 一顆水在含帽蓋奈米碳管之軸向位置隨時間變化圖 (a) 1K;(b) 300K;(c) 1000K;(d) 2000K (均以10nm的(5,5)奈米碳管為例,10萬步階) ……………………………………………………66 圖5-6 分子動力學與量子分子動力學的模擬結果比較(含水C60) ……67 圖5-7 不含水長度50 Å的奈米碳管端部振盪與溫度之關係圖 (a)平均值與標準差;(b)變異數……………………………………………68 圖5-8 奈米碳管端部振盪與溫度之變異數圖 (a)碳管長度25 Å中間含水;(b)碳管長度100 Å底部含水…………………………………68 圖5-9 無水與底部含水的奈米碳管管端部振盪與溫度之平均值與標準差的比較圖 (a)碳管長度50Å的(5,5);(b)碳管長度25Å的(9,0) ……………………………………………………………………69 圖5-10 一顆水在含帽蓋奈米碳管之軸向與徑向位置隨時間變化圖 (a)273K;(b)373K;(c)500K;(d)1000K;(e)2000K (均以25Å的(10,10)奈米碳管為例,5萬步階) ……………………………70 圖5-11 一顆水在含帽蓋奈米碳管之位置隨時間變化圖 (a)水距碳管軸心;(b)各種溫度之下水在碳管的軸向位置(5萬步階);(c)373K之下水在碳管的軸向位置(100萬步階) (均以25Å的(10,10)奈米碳管為例,5萬步階) ……………………………………………72 圖5-12 一顆水在含帽蓋奈米碳管之軸向與徑向位置隨時間變化圖 (a)373K;(b)500K;(c)1000K (均以25Å的(5,5)奈米碳管為例,5萬步階) ………………………………………………………73 圖6-1 0 K之下Armchair形態之長柱、短柱、以及雙層奈米碳管的應變能與應變之變化圖……………………………………………74 圖A-1 Tersoff三體勢能鍵角示意圖………………………………96 表目錄 表2-1 奈米碳管各種性質的總表[32-33]………………………15 表2-2 各種材料之楊氏係數及拉伸強度的比較表………………23 表2-3 奈米碳管重要應用的分類表[32-33]……………………25 表4-1 各種承受壓負荷柱體的等效長度[127]……………………38 表A-1 Tersoff 勢能參數…………………………………………94

    [1]. http://www.zyvex.com/nanotech/feynman.html
    [2]. http://nano.nsc.gov.tw/
    [3]. http://www.tainano.com/chin/Eigler.htm
    [4]. http://www.nature.com/index.html
    [5]. http://www.sciencemag.org/
    [6]. http://isiknowledge.com/
    [7]. http://www.scirus.com/
    [8]. Y. Achiba, P. W. Fowler, D. Mitchell, and F. Zerbetto, Structural predictions for the C-116 molecule. Journal of Physical Chemistry A, 102, 34, 6835-6841, 1998.
    [9]. Sumio Iijima, Helical Microtubeles of Graphitic carbon, Nature, 354, 56-58, 1991
    [10]. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene. Nature, 318, 162, 1985.
    [11]. 張自恭,碳六十,財團法人國家實驗研究院國家高速網路與計算中心,知識庫網頁,NanoScience奈米科學網,奈米小辭典 (http://nano.nchc.org.tw/dictionary/c60.php);張自恭,C60-碳六十(Buckminsterfullerene),機械工業雜誌,255 期,第266頁,2004 年06 月號。
    [12]. Sumio Iijima and Toshinari Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603-605 1993.
    [13]. D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, UK, 1997.
    [14]. J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes. Physical Review Letter, 79, 7, 1297-1300, 1997.
    [15]. D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42, 15, 9458-9471, 1990.
    [16]. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letter, 76, 14, 2511-2514, 1996.
    [17]. D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Energetics of nanoscale graphitic tubules. Physical Review B, 45, 21, 12592-12595, 1992.
    [18]. C. F. Cornwell and L. T. Wille, Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun, 101, 8, 555-558, 1997.
    [19]. Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang, and Chi-Chuan Hwang, Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study. Nanotechnology, 17, 15, 14, 3920-3924, 2006.
    [20]. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic Properties of C and BxCyNz Composite Nanotubes. Physical Review Letter, 80, 20, 4502-4505, 1998.
    [21]. D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 59, 19, 12678-12688, 1999.
    [22]. Gregory van Lier, Christian Van Alsenoy, Vic Van Doren and Paul Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and grapheme. Chemical Physics Letters. 326, 1-2, 181-185, 2000.
    [23]. Z. Peralta-Inga, S. Boyd, J. S. Murray, C. J. O’Connor, and P. Politzer, Density Functional Tight-Binding Studies of Carbon Nanotube Structures. Structures Chem, 14, 5, 431-443, 2003.
    [24]. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678-680, 1996.
    [25]. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Young’s modulus of single-walled nanotubes. Physical Review B, 58, 20, 14013-14019, 1998.
    [26]. Eric W. Wong, Paul E. Sheehan, and Charles M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science, 277, 1971-1975,1997.
    [27]. T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S.-Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature, 405, 769-772, 2000.
    [28]. K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid, Nanomechanics of single and multiwalled carbon nanotubes. Physical Review B, 69, 11, 115429-115437, 2004.
    [29]. S. S. Antman. Nonlinear problems of elasticity. Springer-Verlag, New York, NY, 1995.
    [30]. G. W. Hunt, G. J. Lord, and M. A. Peletier. Cylindrical shell buckling:a characterization of localization and periodicity. Discrete and Continuous Dynamical Systems B, 3, 4, 505-518, 2003.
    [31]. J. G. Swadener, E. P. George, and G. M. Pharr. The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 50, 4, 681-694, 2002.
    [32]. 成會明,奈米碳管(奈米研究與應用系列),五南圖書出版社,2004。
    [33]. R. Satio, G.. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes. Imperial College Press, London, Singapore, 1998.
    [34]. Sumio Iijima, Charles Brabec, Amitesh Maiti, and Jerzy Bernholc, Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 104, 5, 2089, 1996.
    [35]. W. Clauss, D. J. Bergeron and A. T. Johnson, Atomic resolution STM imaging of a twisted single-wall carbon nanotube. Physical Review B, 58, 8, R4266-R4269, 1998.
    [36]. P. M. Ajayan, L. S. Schadler, C. Giannaris and A. Rubio, Progress in polymer composites with carbon nanotubes. Advanced Materials, 12, 10, 750-753, 2000.
    [37]. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 76, 20, 2868, 2000.
    [38]. D. Srivastava, M. Menon and K. Cho, Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression. Physical Review Letter 83, 15, 2973-2976, 1999.
    [39]. Chengyu Wei, Deepak Srivastava and Kyeongjae Cho, Molecular dynamics study of temperature dependent plastic collapse of carbon nanotubes under axial compression. Computer Modeling in Engineering & Sciences, 3, 2, 255-262, 2002.
    [40]. T. Ozaki, Y. Iwasa and T. Mitani, Stiffness of Single-Walled Carbon Nanotubes under Large Strain. Physical Review Letter, 84, 8, 1712-1715, 2000.
    [41]. C. L. Zhang and H. S. Shen, Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon, 44, 13, 2608-2618, 2006.
    [42]. M. Arroyo and T. Belytschko, An atomistic-based finite deformation membrane for single layer crystalline films. Journal of the Mechanics and Physics of Solids, 50, 9, 1941-1977, 2002.
    [43]. M. Arroyo and T. Belytschko. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Physical Review B, 69, 11, 115415-115426, 2004.
    [44]. O. Lourie, D. M. Cox and H. D. Wagner, Buckling and Collapse of Embedded Carbon Nanotubes. Physical Review Letter, 81, 8, 1638-1641, 1998.
    [45]. A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad and P. M. Ajayan, Super-Compressible Foamlike Carbon Nanotube Films. Science,310, 5752, 1307-1310, 2005
    [46]. A. Sears and R. C. Batra, Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B, 69, 23, 235406-235416, 2004.
    [47]. A. Sears and R. C. Batra. Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 73, 085410-085421, 2006.
    [48]. 黃吉川,奈米碳管-走在科技的尖端(科普化材料︰奈米仿生光電-奈米碳管特性材),行政院國家科學委員會專題研究計畫成果報告,民國九十六年二月二十八日(NSC 94-2515-S-006-010)。
    [49]. Hummer G, Rasaiah JC, Noworyta JP, Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414, 6860, 188-190, 2001.
    [50]. N R de Souza, A I Kolesnikov, C J Burnham and C-K Loong, Structure and dynamics of water confined in single-wall carbon nanotubes. Journal of Physics: Condensed Matter, 18, 36, S2321-S2334, 2006.
    [51]. Mashl R. Jay, Joseph Sony, Aluru N. R., and Jakobsson Eric, Anomalously immobilized water: A new water phase induced by confinement in nanotubes. Nano letters, 3, 5, 589-592, 2003.
    [52]. Liu YC, Wang Q, Transport behavior of water confined in carbon nanotubes. Physical Review B, 72, 8, 085420-085424, 2005.
    [53]. Wang Jun, Zhu Yu, Zhou Jian, Lu Xiaohua, Molecular Dynamics Study of Water Molecules Confined in Carbon Nanotubes with Different Helicity. Acta Chim Sinica, 61, 12, 1891-1896, 2003.
    [54]. Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., and Koratkar, N. Polarity-Dependent Electrochemically Controlled Transport of Water through Carbon Nanotube Membranes. Nano Letters, 7, 3, 697-702, 2007
    [55]. N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, M. Yoshimura, Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Letters, 4, 11, 2237-2243, 2004.
    [56]. Walther JH, Jaffe R, Halicioglu T, Koumoutsakos, P, Carbon nanotubes in water: Structural characteristics and energetics. Journal of Physical Chemistry B, 105, 41, 9980-9987, 2001.
    [57]. Kolesnikov, Alexander I, Zanotti, Jean-Marc, Loong, Chun-Keung, Thiyagarajan, Pappannan, Moravsky, Alexander P, Loutfy, Raouf O, Burnham, Christian J, Anomalously Soft Dynamics of Water in a Nanotube: A Revelation of Nanoscale Confinement. Physical Review Letters, 93, 3, 035503-035507, 2004.
    [58]. 吉野雄太,炭素ナノチューブによる水素吸蔵の分子動力学法シミュレーション,日本東京大學機械工程研究所碩士論文, 2002。
    [59]. Bohm MC, Schulte J, Schlogl R., An ab initio study of the C-60particle-hole pair C-60(12+) and C-60(12- ). Zeitschrift fur Naturforschung A, 52, 4, 331-334, 1997.
    [60]. F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly and L. J. Terminello, Near-edge x-ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials. Applied Physics Letters, 69, 4, 568-570, 1996.
    [61]. http://students.chem.tue.nl nanotube
    [62]. O. Zhou, R. M. Fleming, D W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum., A subset of CD4+ thymocytes selected by MHC class I molecules. Science, 263, 5154, 1774-1778, 1994.
    [63]. S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J.Van Landuyt., A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes. Science, 267, 1334-1338, 1995.
    [64]. H. Dai, E.W. Wong, and C. M. Lieber., Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science, 272, 5261, 523-526, 1996.
    [65]. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio., Electrical conductivity of individual carbon nanotubes. Nature, 382, 5451, 54-56, 1996.
    [66]. Chuan Chen, Chia-Chang Tsai, Jian-Ming Lu, and Chi-Chuan Hwang, Electronic Properties of Capped, Finite-Length Armchair Carbon Nanotubes in an Electric Field. The Journal of Physical Chemistry B, 110, 25, 12384-12387, 2006.
    [67]. Chia-Chang Tsai, Gwo-Jiunn Huang, Jian-Ming Lu, Ming-Horng Su, and Chi-Chuan Hwang, “Low-energy electronic states of carbon nanocones in an electric field” , Physical Chemistry Chemical Physics (Submitted)
    [68]. ETO Hajime, Interdisciplinary information input and output of a nano-technology project. Scientometrics, 58, 1, 5-33 ,2003
    [69]. K. Yu, Z. Zhu, Q. Li and W. Lu, Electronic properties and field emission of carbon nanotube films treated by hydrogen plasma. Applied Physics A: Materials Science & Processing, 77, 6, 811-817, 2003.
    [70]. U. Kim, D. M. Aslam, Field emission electroluminescence on diamond and carbon nanotube films. The Journal of Vacuum Science and Technology B, 21, 4, 1291-1296, 2003.
    [71]. J.H. Huang, C.C. Chuang and C.H. Tsai, W.J. Chen, Excellent field emission from carbon nanotubes grown by microwave-heated chemical vapor deposition. The Journal of Vacuum Science and Technology B, 21, 4, 1655-1659, 2003.
    [72]. Poa CHP, Smith RC, Silva SRP, Watts PCP, Hsu WK, Kroto HW, Walton DRM, Field emission from nonaligned carbon nanotube-polymer matrix cathodes. The Journal of Vacuum Science and Technology B, 21, 4, 1715-1719, 2003.
    [73]. Z.G. Zhao, Y. Tong, C. Liu, H.M. Cheng, Effect of geometrical parameters on the field-emission properties of single-walled carbon nanotube ropes. Journal of Materials Research, 18, 9, 2188-2193, 2003.
    [74]. C.H. Lee, K.T. Kang, K.S. Park, M.S. Kim, H.S. Kim, H.G. Kim, J.E. Fischer, A.T. Johnson, The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor. Japanese Journal of Applied Physic, 42, 8, 5392-5394, 2003.
    [75]. http://www.bytemag.ru
    [76]. http://www.itri.org.tw/chi/rnd/advanced_rnd/
    [77]. Kazuhiko Matsumoto, Seizo Kinoshita, Yoshitaka Gotoh, Kousuke Kurachi, Takahumi Kamimura, Masatoshi Maeda, Kazue Sakamoto, Masashi Kuwahara, Nobuhumi Atoda and Yuji Awano, Single-electron transistor with ultra-high Coulomb energy of 5000 K using position controlled grown carbon nanotube as channel. Japanese Journal of Applied Physic, 42, 4B, 2415-2418, 2003.
    [78]. Fumiyuki Nihey, Hiroo Hongo, Masako Yudasaka and Sumio Iijima, A top-gate carbon-nanotube field-effect transistor with a titanium-dioxide insulator. Japanese Journal of Applied Physic, 41, 10A, 1049-1051, 2002.
    [79]. Eliseev A. A., Carbon-nanotube transistor arrays used for fabrication of multistage complementary logic devices and ring oscillators. MRS Bulletin, 27, 10, 737-738, 2002.
    [80]. Ali Javey, Qian Wang, Ant Ural, Yiming Li, and Hongjie Dai, Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Letters, 2, 9, 929-932, 2002.
    [81]. Claes Thelander, Martin H. Magnusson, Knut Deppert, Lars Samuelson, Per Rugaard Poulsen, Jesper Nygard, and Jorn Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads. Applied Physics Letters, 79, 13, 2106-2108, 2001.
    [82]. S. Chopra, K. McGuire, N. Gothard, A. Pham and A. M. Rao, Selective gas detection using a carbon nanotube sensor. Applied Physics Letters, 83, 11, 2280-2282, 2003.
    [83]. Jing Li, Yijiang Lu, Qi Ye, Martin Cinke, Jie Han, and M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 3, 7, 929-933, 2003.
    [84]. Marion Wienecke, Mihaela-C. Bunescu, Marlis Pietrzak, K. Deistung and Petra Fedtke, PTFE membrane electrodes with increased sensitivity for gas sensor applications. Synthetic Metals, 138, 1-2, 165-171, 2003.
    [85]. Peng S., Cho K. J., Ab initio study of doped carbon nanotube sensors” Nano Letters, 3, 4, 513-517, 2003.
    [86]. D. Hash, D. Bose, T.R. Govindan, M. Meyyappan, Simulation of the dc plasma in carbon nanotube growth. Journal of Applied Physics, 93, 10, 6284-6290 Part 1, 2003.
    [87]. S.S Han, H.M. Lee, Molecular dynamics simulation of zigzag single-walled carbon nanotube closing mechanisms. Metals And Materials Aterials International, 9, 2, 99-105, 2003.
    [88]. Hash D J. M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley & Sons, INC. 1997.
    [89]. K. A. Williams and P. C. Eklund, Monte Carlo Simulations of H2 Physisorption in Finite-Diameter Carbon Nanotube Ropes. Chemical Physics Letters, 320, 3, 352-358, 2000.
    [90]. K. Kaneko, R. F. Cracknell, and D. Nicholson, Nitrogen Adsorption in Slit Pores at Ambient Temperatures: Comparison of Simulation and Experiment. Langmuir, 10, 12, 4606-4609, 1994.
    [91]. C. Liu , Y.Y. Fan,M. Liu M, H.T. Cong, H.M. Cheng , M.S. Dresselhaus, Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science, 286, 5442, 1127-1129, 1999.
    [92]. Shigeo Maruyama, Tatsuto Kimura, Molecular Dynamics Simulation of Hydrogen Storage in Single-Walled Carbon Nanotubes. American Society of Mechanical Engineers, 11, 5-11, 2000.
    [93]. http://puccini.che.pitt.edu/~gio/hydrogen.html
    [94]. http://www.itri.org.tw/chi/news_events/feature/2001/fe-0900601-p2.jsp
    [95]. http://www.iek.itri.org.tw/kmb/PublishCont.aspx?nid=2686&groupKM=14
    [96]. O. Lourie, H.D. Wagner, Effect of thermomechanical stress on the Raman spectrum of embedded carbon nanotubes. Journal of Materials Research, 13, 9, 2418-2422, 1998.
    [97]. Philippe Poncharal, Z. L. Wang, Daniel Ugarte, and Walt A. de Heer, Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes. Science, 283, 1513-1516,1999.
    [98]. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 74, 25, 3803-3805, 1999.
    [99]. Min-Feng Yu, Oleg Lourie, Mark J. Dyer, Katerina Moloni, Thomas F. Kelly, and Rodney S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 287, 637, 2000
    [100]. B. Babic, J. Furer, S. Sahoo, Sh. Farhangfar, and C. Schonenberger, Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes. Nano Letter, 3, 11, 1577-1580, 2003
    [101]. http://www.iek.itri.org.tw/kmb/PublishCont.aspx?nid=2686&groupKM=14
    [102]. Sishen Xie, Wenzhi Li, Zhengwei Pan, Baohe Chang, Lianfeng Sun, Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 61, 7, 1153-1158, 2000
    [103]. C.K. Chiang, M.A. Druy, S.C. Gau; A. J. Heeger, E.J. Louis, A.G. MacDiarmid, Y.W. Park; H. Shirakawa, Synthesis of highly conducting films of derivatives of polyacetylene, (CH)X. Journal of the American Chemical Society, 100, 3, 1013-1015, 1978.
    [104]. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)X. Journal of the Chemical Society, Chemical Communications, 16, 578-580, 1977.
    [105]. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park and A. J. Heeger, Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 39, 17, 1098-1101, 1977.
    [106]. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L.. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier and A. Strevens, A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics. Advanced Materials, 10, 14, 1091-1903, 1998
    [107]. P. M. ajayan and O. Z. Zhou, Applications of Carbon Nanotubes. Topics in Applied Physics, 80, 391-425, 2001.
    [108]. W. H. Cheng, J. Y. Cheng, T. L. Wu, C. M. Wang, S. C. Wang, and W. S. Jou, Electromagnetic shielding of plastic packaging in low-cost laser modules. Electronics Letters, 36, 2, 118-119, 2000.
    [109]. W. S. Jou, T. L. Wu, S. K. Chiu, and W. H. Cheng, Electromagnetic Shielding of Liquid Crystal Polymer Composites Applied to Laser Modules. IEEE/TMS Journal of Electronic Materials, 30, 1287,2001
    [110]. W. S. Jou, T. L. Wu, S. K. Chiu, and W. H. Cheng, The Influence of Fiber Orientation on Electromagnetic Shielding in Liquid Crystal Polymers. IEEE/TMS Journal of Electronic Materials, 31, 3, 178-184, 2002.
    [111]. Wshiarng Jou, H.Z Cheng, C.F Hsuw, H. Cheng, J. Y. Cheng, T. L. Wu, C. M. Wang, S. C. Wang, and W. S. Jou, Electromagnetic shielding of plastic packaging in low-cost laser modules. Electronics Letters, 36, 2, 118-119, 2000.
    [112]. 李旺龍、馮榮豐,奈米工程技術,民91年。
    [113]. K. Eric Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation Tractions, John Wiley & Sons, 1992.
    [114]. Kerson Huang, Statistical Mechanics, John Wiley & Sons, 1987.
    [115]. William T. Thomson and Marie Dillon Dahleh, Theory of Vibration with Applications, 5th Edition, Prentice Hall, 1998.
    [116]. Timoshenko S. P. et al, Vibration problems in engineering. New York: John Wiley & Sons, 1974
    [117]. J. Tersoff, New empirical model for the structural properties of silicon. Physical Review Letter 56, 632-635 (1986).
    [118]. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Physical Review B 37, 6991 (1988).
    [119]. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B 39, 5566-5568 (1989).
    [120]. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids. Qxford Science Publications, Oxford, UK (1987).
    [121]. 黃閔義,以分子動力學方法模擬在溫度與尺寸變異下的單壁奈米碳管楊氏係數之研究,國立成功大學碩士論文,2006。
    [122]. Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang and Chi-Chuan Hwang, “Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study”, BANYAN-Research Express@NCKU, Volume 1, Issue 10, National Cheng Kung University, Tainan, Taiwan, Oct 26 2007, pp. 15-17 (2007) (亦發表如右:謝金源、盧建銘、黃閔義、黃吉川,”單壁式奈米碳管在高溫下會軟化”,榕園-成大研發快訊,第一卷,第十期,成功大學,台南市,民國九十六年十月二十六日,第15~17頁)
    [123]. J. M. Gere and S. P. Timoshenko, Mechanics of Materials, 4th ed., Stanley Thornes Publishers, London, 1999.
    [124]. http://www.ten-shin.com.tw
    [125]. http://service.tra.gov.tw
    [126]. http://www.bridgedesign.se
    [127]. http://me.dyu.edu.tw
    [128]. Timoshenko S P and Gere J M, Theory of Elastic Stability, New York: McGraw-Hill, 1961.
    [129]. 謝金源、黃吉川、黃閔義、盧建銘,”奈米碳管熱噪音之研究”, The 11th National Computational Fluid Dynamics Conference, Tai-Tung, August 2004, pp. CFD11-2505 ~ 1-5.
    [130]. 盧建銘、黃吉川、黃閔義,”奈米碳管之熱振動研究”, The 28th National Conference on Theoretical and Applied Mechanics, Taipei, Taiwan, R. O. C., 3-4 December 2004, pp. 2985-2989.
    [131]. Jin-Yuan Hsieh, Jian-Ming Lu, Min-Yi Huang, and Chi-Chuan Hwang, ”Radius and Temperature Dependences of the Young’s Modulus for Single-Walled Carbon Nanotube”, Proceedings of the 22th national conference on mechanical engineering the Chinese society of mechanical engineers, National Central University, Jhongli City, Taoyuan County 32001, Taiwan ROC, 25-26 November 2005, 新興工程技術 E-I, pp. 249-254.
    [132]. J. M. Lu, C. C. Hwang, Q. Y. Kuo, and Y. C. Wang, Mechanical buckling of multi-walled carbon nanotubes: The effects of slenderness ratio. Physica E: Low-Dimensional Systems and Nanostructures, 40, 5, 1305-1308, 2008.
    [133]. Jian-Ming Lu, Yun-Che Wang, Jee-Gong Chang, Ming-Horng Su, and Chi-Chuan Hwang, “Molecular-dynamic investigation of buckling of double-walled carbon nanotubes under uniaxial compression”, Journal of the Physical Society of Japan, Vol. 77, No. 4, 10 April 2008, pp. 044603-1~7, 2008.
    [134]. Chi-Chuan Hwang, Jian-Ming Lu, Qu-Yuan Kuo, and Yun-Che Wang, “Scaling phenomena of the buckling of single-walled carbon nanotubes”, Journal of Nanoscience and Nanotechnology (Submitted)
    [135]. Jian-Ming Lu, Qu-Yuan Kuo, Yun-Che Wang, and Chi-Chuan Hwang, “Molecular dynamics investigation of Young’s modulus of multi-walled carbon nanotubes” (in preparing)
    [136]. Yun-Che Wang, Jian-Ming Lu, Chi-Chuan Hwang and Jee-Gong Chang, Molecular-Dynamic investigation of buckling of individual single-walled and double-walled carbon nanotubes, ASME Applied Mechanics and Materials Conference (McMat 2007), University of Texas at Austin, USA, June 3-7, 2007. (MCMAT2007-30148) (oral presentation)
    [137]. Hwang C.C., Lu J.M., and Wang Y.C., Scaling phenomena in mechanical buckling of multi-walled carbon nanotubes, 17th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-17), Genova Magazzini del Cotone, Italy, July 15-20 2007, pp. 578-579. (Poster: PE78)
    [138]. 盧建銘、林振森、黃吉川、張自恭、朱訓鵬、陳權,“承受單軸向壓縮負荷的單層與雙層奈米碳管之挫曲型態與力學分析的研究”, The 27th National Conference on Theoretical and Applied Mechanics, Tainan, Taiwan, R. O. C., 12-13 December 2003, 新興製造力學系列(下冊), pp. 1068-1073, 2003年12月.
    [139]. 盧建銘、黃吉川、黃閔義,“承受單側軸向壓縮負荷的單層奈米碳管之挫曲力學研究”, The 11th National Computational Fluid Dynamics Conference, Tai-Tung, August 2004, pp. CFD11-2506 ~ 1-6.
    [140]. 盧建銘、黃吉川,”承受雙側軸向壓縮負荷的單層奈米碳管之挫曲行為研究”, Proceedings of the 21th national conference on mechanical engineering the Chinese society of mechanical engineers, National Sun Yat-Sen University, Kaohsiung 804, Taiwan ROC, 29-30 Nov., 2004, 5591-5596.
    [141]. 盧建銘、郭屈原、王雲哲、黃吉川,”以分子動力學方法模擬奈米碳管的挫曲行為與尺度效應之研究”,The 14th National Computational Fluid Dynamics Conference, Nantou county, August 2007, pp. CFD14 C-041~1-10. (Poster: C-041)
    [142]. 郭屈原、王雲哲、盧建銘、黃吉川,”多壁奈米碳管的力學挫曲行為之探討”, 2007年奈米技術與材料研討會(Nano-Scale Technology and Materials Symposium 2007),大葉大學,彰化縣,台灣,2007年12月7日,pp. 8 (oral presentation)
    [143]. 郭屈原、王雲哲、盧建銘、張自恭、黃吉川,”以分子動力學方法探討多壁奈米碳管的楊氏係數”,2008 Conference on Precision Machinery and Manufacturing Technology-PMMT 2008 (2008精密機械與製造科技研討會), May 23-25, 2008, Kenting, Pingtung County, Taiwan, pp. C34-01 (C34-01~06) (Poster)
    [144]. Qu-Yuan Kuo, Yun-Che Wang, Jian-Ming Lu, Gee-Gong Chang, and Chi-Chuan Hwang, ”Molecular Dynamics Investigation of Young’s Modulus of Multi-walled Carbon Nanotubes”,The Fifteenth Military Symposium on Fundamental Sciences(第15屆三軍官校基礎學術研討會), June 13, 2008, Kaohsiung, Taiwan, pp. B76-80. (oral presentation)
    [145]. 盧建銘、王雲哲、吳俊毅、黃吉川,”水在奈米碳管或碳-60的動態特性之研究”, The 14th National Computational Fluid Dynamics Conference, Nantou county, August 2007, pp. CFD14 B-090~1-10. (Poster: B-090)
    [146]. 盧建銘、洪正修、黃吉川、簡文通、李旺龍、王雲哲,”含水奈米碳管的動態行為分析”,The 31th National Conference on Theoretical and Applied Mechanics, December 21-22, 2007, ISU, Kaohsiung, Taiwan, R.O.C., pp. 448 (P10-1~6) (oral presentation)
    [147]. Jian-Ming Lu, Chun-Yi Wu, Cheng-Shiu Hung, Wen-Tung Chien, Wang-Long Li, Chi-Chuan Hwang, and Yun-Che Wang*, Dynamical behavior of water inside a capped single-walled carbon nanotube, The first ASME Micro/Nanoscale Heat Transfer International Conference (MNHT2008), National Cheng Kung University, Tainan City, Taiwan, January 6-9, 2008. (MNHT2008-52227) (oral presentation)
    [148]. 謝金源、張自恭、黃吉川、盧建銘、黃閔義,”奈米碳管場發射顯示之行為模擬分析” , 2005台灣光電科技研討會,台南,台灣,2005年12月9~10日, PG-SA1-29, 壁報論文 pp. 98~1-3.
    [149]. 盧建銘、洪正修、黃吉川、簡文通、李旺龍、王雲哲、張自恭、簡賸瑞,”奈米碳管場發射顯示器之碳管動態行為分析”,2007台灣光電科技研討會,中興大學,台中,台灣,2007年11月30~12月1日,pp. 124. (Poster:GP-007-1~3)
    [150]. C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, M. F. Lin, “Low-energy electronic properties of the AB-stacked few-layer graphites”, Journal of Physics-Condensed Matter, Vol. 18, No. 26, 5 July 2006, pp. 5849-5859 (2006)
    [151]. 羅勗誠,以分子動力學方法模擬在溫度與尺寸效應下有蓋之單壁奈米碳管對銅基板進行深孔加工之研究,國立成功大學碩士論文,2007。
    [152]. Chen Chuan, Jian-Ming Lu, Jin-Yuan Hsieh and Chi-Chuan Hwang, “Molecular dynamics simulation on both deep-indentation and machinability of a nanoscale carbon nanotube”, The 31th National Conference on Theoretical and Applied Mechanics, December 21-22, 2007, ISU, Kaohsiung, Taiwan, R.O.C., pp. 445 (P07-1~8) (oral presentation)
    [153]. J. Tersoff, Modeling solid-state chemistry:Interatomic potentials for multicomponent systems, Phys. Rev. B, Vol. 39, 5566, 1989.
    [154]. T. Ohira, O. Ukai, M. Noda, Y. Takeuchi, M. Murata and H. Yoshida, MRS Symp. Proc., 408, 445-450, (1996)
    [155]. Roger Smith, “Nuclear Instruments and Methods” in Physics Research, B67, 335, (1992)
    [156]. H. J. C. Berendsen et al., J. Phys. Chem., 91, 6269, (1987)
    [157]. M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys., 112(20), 8910, (2000)
    [158]. Users’ Manual of Materials Explorer for Windows (2002)

    下載圖示 校內:立即公開
    校外:2008-09-01公開
    QR CODE