| 研究生: |
郭姵均 Kuo, Pei-chun |
|---|---|
| 論文名稱: |
毫米波CMOS射頻晶片嵌入式天線之研製與量測方法的探討 Research on Millimeter-wave CMOS On-Chip Antennas And Measurement Methodology |
| 指導教授: |
莊惠如
Chuang, Huey-ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 毫米波 、量測方法 、晶片嵌入式天線 |
| 外文關鍵詞: | Millimeter-wave, On-Chip Antennas, Measurement Methodology |
| 相關次數: | 點閱:69 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研製毫米波CMOS 射頻晶片嵌入式天線,包含60-GHz CMOS 射頻嵌入式Yagi天線與帶通濾波器之整合晶片、平面倒F型天線、26-及77-GHz之雙頻碎形晶片嵌入式天線,以及毫米波CMOS寬頻對數週期性槽孔CPW射頻晶片嵌入式天線,且饋入系統皆採用共面波導之饋入架構,量測方面採用probe station on-wafer量測方式,可量測VSWR以及天線最大輻射增益,並且在內文中討論加入dummy後對天線輸入阻抗以及天線輻射效益之影響、製程下方的基底層對天線輻射效益以及天線輻射場型之影響,還有實際晶片切割對天線共振頻率之影響等。天線之模擬與研究皆使用3-D 全波電磁數值模擬軟體HFSS進行模擬。
60-GHz毫米波CMOS Yagi天線與帶通濾波器之整合晶片方面,晶片總面積包含dummy以及PADs為1.1 × 1.34 mm2;共振頻率57-64 GHz之S11皆小於-15 dB (VSWR < 1.5),滿足所使用之頻帶;而天線輻射增益則為-14.057 dBi。在60-GHz CMOS 射頻晶片嵌入式平面倒F型天線方面,其晶片總面積包含dummy以及PADs為0.706 × 0.815 mm2;共振頻率57-64 GHz之VSWR值皆小於2;60-GHz天線輻射增益為-15.6 dBi。26-及77-GHz之雙頻碎形晶片嵌入式天線方面,晶片總面積為1.275 × 1.4 mm2 (包含dummy之實際面積),共振頻率24.5-27.5及74-80 GHz之VSWR皆小於2。而天線輻射增益頻率在26-GHz中,模擬與量測結果分別為 -16.6 dBi與 -16.7 dBi;在77-GHz中,模擬為-7.05 dBi。毫米波CMOS寬頻對數週期性槽孔CPW射頻晶片嵌入式天線方面,天線輻射體則是採用寬頻對數週期性槽孔天線架構,主要達到寬頻效果。其晶片總面積(包含dummy之實際面積)為1.1 × 1.4 mm2,共振頻率31.1-110 GHz之VSWR小於2。最後為射頻晶片天線場型量測法,主要利用號角形天線量測天線輻射場型2D平面圖,成功量測出射頻晶片嵌入式天線之場型,並在內文中討論探討接收端接收到能量是否真正由整合晶片所輻射能量,可由討論中得知,接收端接收到能量的確為整合晶片所輻射能量。
This thesis presents the research on millimeter-wave CMOS on-chip antennas and measurement methodology. The CMOS on-chip antennas are fabricated by using a TSMC 0.18-μm 1P6M CMOS process. An FEM-based 3-D full-wave EM solver, HFSS, is used for design simulation. A 60-GHz CMOS integrated on-chip Yagi-antenna and bandpass filter, 60-GHz CMOS planar inverted-F, 26-/77-GHz dual-band fractal and broadband millimeter-wave CPW-fed log-periodic slot CMOS on-chip antennas are designed and fabricated. The on-wafer measurement is performed in a microwave probe station.
[1]IEEE 802.15 Working Group for WPAN. [Online]. Available :http://www.ieee802.org/15/
[2]IEEE 802.15.3™ guide addresses untapped high-rate wireless personal area network(WPAN) market. [Online]. Available :http://standards.ieee.org/announcements/pr_802153wpanguide.html
[3]Y. P. Zhang, M. Sun, and L. H. Guo, “On-chip antennas for 60-GHz radios in silicon technology,” in IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1664-1668, Jul. 2005.
[4]The benefits of 60 GHz unlicensed wireless communications. [Online]. Available :
http://www.terabeam.com/solutions/whitepapers/benefits-60ghz.php
[5]Y. Huang and K. Boyle, Antenna From Theory to Practice, 1st ed. John Wiley & Sons Ltd, 2008.
[6]IBM Thomas J. Watson Research Center . 60-GHz applications. IBM Corp., NY. [Online]. Available:
http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
[7]C. H. Doan, S. Emami, D.A. Sobel, A. M. Niknejad, and R. W. Brodersen, “Design considerations for 60 GHz CMOS radios,” IEEE Commun. Mag., vol. 42, pp. 132-140, Dec. 2004.
[8]N. Guo, R. C. Qiu, S. S. Mo and K. Takahashi, “60-GHz millimeter-wave radio: principle, technology, and new results,” EURASIP Journal on Wirelless Communications and Networking, vol. 8, 2007.
[9]P. Smulders, “Exploring the 60 GHz band for local wireless multimedia access: Prospects and future directions,” IEEE Commun. Mag., vol. 40, no. 1, pp. 140–147, Jan. 2002.
[10]許順盛,60-GHz CMOS射頻晶片嵌入式天線及915-MHz近身軟板印刷式天線的研究設計,2007年7月。
[11]陳乃塘,「高畫質傳輸新世代來臨 毫米波應用加入通訊行列」,新通訊元件雜誌,2007年11月。
http://www.2cm.com.tw/technologyshow_content.asp?sn=0711090004
[12]IEEE 802.15 WPAN task group 3c (TG3c) millimeter wave alternative PHY. [Online]. Available :
http://www.ieee802.org/15/pub/TG3c.html
[13]S. S. Hsu, K. C. Wei, C. Y. Hsu, and H. R. Chuang, “A 60-GHz millimeter-wave CPW-fed Yagi-antenna fabricated using 0.18-μm CMOS technology,” IEEE Electron Device Letters. vol. 29, no. 6, pp. 625 – 627, June 2008.
[14]L. K. Yeh, C. Y. Hsu, Y. C. Chen, H. R. Chuang, and C. Y. Chen, “A CPW CMOS bandpass filter,” in Global Symposium on Millimeter Waves, Sendai, Japan, 2009.
[15]Rainee N. Simons and Richard Q. Lee, “On-wafer characterization of millimeter-wave antennas for wireless applications”, IEEE Trans. Microw. Theory Tech. , vol. 47, no. 1, pp. 92-96, Jan. 1999.
[16]K. K. Samanta, D. Stephens, and I.D. Robertson, “Design and performance of a 60-GHz multi-chip module receiver employing substrate integrated waveguides,” IET Microw. Antennas Propag., vol.1, no.5, pp.961-967, Oct. 2007.
[17]C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. New York: Wiley, 2005.
[18]S. R. Saunders, Antennas and propagation for wireless communication systems, John Wiley and Sons Ltd, 1999.
[19]C. Soras, M. Karaboikis, G Tsachtsiris, and V. Makios, “Analysis and design of an inverted-F antenna printed on a PCMCIA card for the 2.4 GHz ISM Band,” IEEE Antennas Propag. Mag., vol. 44, no. 1, pp. 37–44, Feb. 2002.
[20]B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1983.
[21]S.R. Best, “On the significance of self-similar fractal geometry in determining the multiband behavior of the Sierpinski Gasket antenna”, IEEE Antennas Wireless Propag. Lett., Vol.1, no, 1, pp.22 - 25, 2002.
[22]C.Puente, J.Romeu, R. Pous, J. Ramis and A.Hijazo, “Small but long Koch fractal momopole.” IEEE Electron. Lett., vol. 34, no. 1, pp. 9 - 10, Jan. 1998.
[23]H. O. Peitgen, H. J¨urgens, and D. Saupe, Chaos and Fractals. New York: Springer - Verlag, 1990.
[24]M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, D. Saupe, R. F. Voss, Y. Fisher and M. Mc Guire, The Science of Fractal Images. New York: Springer - Verlag, 1988.
[25]A. Bunde and S. Havlin, “Fractal in science,” in Springer, Berlin, 1994.
[26]J. Huang, F. Shan, J. She and Z. Feng, “A novel small fractal patch antenna,” in IEEE Asia - Pacific Microwave Conference, Suzhou, China, Dec. 2005.
[27]S. Y. Chen, P. H. Wang, P. Hsu, “Uniplanar log-periodic slot antenna fed by a CPW for UWB applications,” IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 256–259, Dec. 2006.
[28]A. U. Bhobe, C. L. Holloay, R. Hall, and M. Piket-May, “Wide-band slot antennas with CPW feed lines: hybrid and log-periodic designs,” IEEE Trans. Antennas Propag., vol. 52, no. 10, pp. 2545–2554, Oct. 2004.
[29]C. P Wen, “Coplanar waveguide: a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 12, pp. 1087-1090, Dec. 1969.
[30]H. C. Liu, T. S. Horng and N. G. Alexopoulous, “Radiation of printed antennas with a coplanar waveguide-fed,” IEEE Trans. Antennas Proporgat., vol. 10, pp. 1143-1148, 1995.
[31]J. W. Greiser, “Coplanar stripline antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
[32]R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: Wiley, 2001.
[33]K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Washington, pp. 375-399, 1996.
[34]K. Tilley, X.-D. Wu and K. Chang, “Coplanar waveguide fed coplanar strip dipole antenna,” IEEE Electron. Lett., vol. 30, no. 3, Feb. 1994.
[35]C. J. Panagamuwa, J. C. Vardaxoglou, “Optically reconfigurable balanced dipole antenna,” in ICAP, vol. 1, pp. 237-240, Apr. 2003.