簡易檢索 / 詳目顯示

研究生: 彭耀德
Peng, Yao-Te
論文名稱: 含水聯胺與Shell 405觸媒平衡反應特徵探討
An Investigation of the Equilibrium Characteristics of the reaction between Hydrated Hydrazine and Shell 405
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 48
中文關鍵詞: 含水聯胺
外文關鍵詞: Shell 405, Hydrated Hydrazine
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      聯胺(N2H4)與觸媒Shell 405接觸時之反應特性,可瞬間產生大量而高溫的低分子量氣體,已被廣泛的應用於各方面,特別是在國防工業和航太科技的火箭推進上。近年來由微衛星的快速發展,使推進系統微米化的需求日增,但由於純聯胺分解反應溫度過高,無法被微推元件所接受,故本研究期以聯胺摻水的方式來降低其反應溫度以達到要求。

      本實驗在固定燃料流率、觸媒床設計(直徑35mm,長度60mm之圓柱狀)與觸媒填充量(80克)之下,觀察不同比例(0~40%)含水聯胺在不同壓力下(60~140Psi)之反應平衡溫度,並應用色層分析儀(gas chromatograph)定量分析反應平衡氣體之 含量以確定氨分解率x值,以了解含水比例、平衡溫度、氨分解率與壓力之間的相互關係,以助於微推進氣源產生器之設計,結果如下:

    (1) 聯胺分解反應之平衡溫度隨著含水比例的增加會逐漸遞減。(在10%含水量時,系統壓力為60~140psi下約可降溫20~50K)
    (2) 在含水聯胺與觸媒Shell 405反應中,水分子可能會附著於觸媒Shell 405上,導致觸媒活性降低,聯胺分解反應延遲。
    (3) 水對減緩反應速率的影響隨著壓力提升而變大。
    (4) 平衡溫度隨著壓力增加而升高,且壓力對平衡溫度的影響,隨著含水比例的增加而逐漸變小。
    (5) Shell 405在低溫(393K)時,對氨分解並無明顯作用;氨分解率的高低取決於聯胺分解反應溫度。
    (6) 氨分解率隨著含水比例的增加而遞減。

      對微推進系統而言,在聯胺中摻水的確符有效的降低聯胺與Shell 405之間的反應溫度,由本實驗結果可知聯胺在含水量0~25%之間,降溫效果最為顯著,而且氨分解率與聯胺分解反應速率改變也不大,藉此說明在微推系統上含水聯胺為一種相當潛力與發展的。

    Abstract
     The reaction of hydrazine and catalyst(Shell 405) can instantaneously produce a large amount of the high temperature and low-molecular weight gas. This reactive characteristics is extensively applied on the propulsion field in aeronautic and astronautic industries. In recent years, due to the fast growth of nano- and pico-satellites, the needs of micro-scale propulsion system escalate simultaneously. However, the conventional material of MEMS devices can not sustain the high temperature generated by the fast decomposition of Hydrazine. In order to utilize the comparative low reaction temperature of hydrate hydrazine that potentially can be use as the propellant of micro propulsion systems, this thesis research investigated the characteristics of the reaction between hydrate hydrazine and Shell 405. The variations of reaction temperature and the degree of ammonia dissociation were experimentally observed at different pressures (60~140psi) and degrees of hydrated hydrazine (040%) at a constant fuel flow rate of hydrate hydrazine uniformly spray into a Shell 405 packed reactor. While measuring the temperature and the pressure in the reactor, gas chromatograph was adopted to quantitative analysis of ammonia dissociation.

     The experimental observations showed
    (1) The reaction temperatures of hydrate hydrazine/shell 405 decreased with increasing water percentage. (20~50K with 10% hydrate hydrazine at various pressures)
    (2) The rate of hydrazine dissociation decreased when water presented. This is probably caused by the reduction of the reactive site on Shell 405 due to water molecular adhesion.
    (3) The effect of water addition on hydrazine dissociation rate increased with pressure increasing.
    (4) The reaction temperature increased with pressure increasing, however, the effect of pressure on reaction temperature decreased with the increasing of water content.
    (5) Shell 405 did not show catalytic effect on ammonia dissociation at 393K, the degree of ammonia dissociation mainly relied on the reaction temperatures in the reactor.
    (6) The degree of ammonia dissociation decreased with the increasing of water content.

     As to be used in micro propulsion systems, the reaction temperature between hydrazine and Shell 405 was successfully reduced by adding water into hydrazine. With 0-25% of water addition, the temperature reduction was effective without significant rate reduction and change of ammonia dissociation. This research result showed that hydrate hydrazine is a potential propellant as the source of hot gas for micro propulsion systems.

    目錄 中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 導論 1 1-1 前言 1 1-2 研究動機 4 1-3 研究目的 5 1-4 文獻回顧 6 第二章 特性分析 12 2-1 燃料與觸媒特性 12 2-2 含水聯胺氣相分解反應分析與氨分解率計算 17 第三章 實驗設備與步驟 19 3-1 實驗設備與儀器 19 3-2 實驗步驟 23 第四章 結果與討論 24 4-1 結果分析與討論 24 4-2 結論 28 4-3 結語 28 參考文獻 30 表 33 圖 38 自述  48

    參考文獻
    1. Mitterauer, J., “Prospects of Liquid Metal Ion Thrusters for Electric Propulsion”, IEPC Paper 91-105.
    2. Janson, S., “Chemical and Electric Micropropusion Concepts for Nanosatellites”, AIAA paper 94-2998.
    3. Lewis, D., Antonsson, E., and Janson, S., “MEMS Microthruster Digital Propulsion System”, Proceedings, Formation Flying and Micro-Propulsion Workshop, Air Force Research Laboratory (AFRL), Oct. 20-21, 1998, Lancaster.
    4. Youngner, D. and Choueiri, E., “MEMS Mega-Pixel Microthruster Arrays for Micro-Satellites”, Proceedings, Formation Flying and Micro-Propulsion Workshop, Air Force Research Laboratory (AFRL), Oct. 20-21, 1998, Lancaster.
    5. Mueller, J., Chakraborty I., Vargo S., Bame D, and Marrese C.,“MEMS-Micropropulsion Activities at JPL”, the 2nd International Conference on Integrated MicroNanotechnology for Space Applications pp.175-200.
    6. M. Esashi. “Integrated microflow control systems” Sensors and Actuators A21-23, p161-167, 1990.
    7. H. Jerman, “Electrically-activated micromachined diaphragm valves”, Proc. Micro System Technologies, p806-811, 1990.
    8. M. Huff, J. Gilbert and M. Schmidt, “Flow Chaaracteristics of a Pressure-balanced microvalves”, Tech. Digest IEEE Transducers’93
    9. Farzad Pourahmadi, Lee Christel, Kurt Petersen, Joseph Mallon, and Janusz Bryzek, “Variable-Flow Microvalve Structure Fabricated with Silicon Fusion Bonding”, Tech. Digest IEEE Solid-State Sensor and Actuator Workshop, pp78-81, 1990.
    10.蔡明杰 “微閥簡介” 機械工業雜誌,173期,1997,8
    11.張國明 “熱挫屈致動微閥製程研究” 機械工業雜誌,173期,1997,8.
    12.Eberstein I. J. and Glassman I., “The Gas-Phase Decomposition of Hydrazine and Its Methyl Derivatives”,10th Symposium on Combustion,pp.365-374,1965.
    13.Strand, L., Toews, H., Schwartz, K., and Milewski, R., "Extended Duty Cycle Testing of Spacecraft Propulsion Miniaturized Component," AIAA Paper 95-2810, San Diego, CA, July 1995.
    14.Morash, D. H., and Strand, L., "Miniature Propulsion Components for the Pluto Fast Flyby Spacecraft, " AIAA Paper 94-3374, Indianapolis, IN, June 1994.
    15.Bzibziak, R., "Miniature Cold Gas Thrusters," AIAA Paper 92-3256, Nashville, TN, July 1992.
    16.Gross, S. H., and Rhee, M. S., "Low Power Draw, 44mN-sec Cold Gas Micro-Thruster and Driver System," AIAA Paper 99-2694, 35th Joint Propulsion Conf., Los Angeles, CA, June 1999.
    17.Nakazono, B., "Second-Generation Microspacecraft Propulsion Analysis and Alternatives," Jet Propulsion Lab. Internal Document, JPL-D-14038, Pasadena, CA, 8 Nov. 1996.
    18.H.W. Lucian, “Thermal Decomposition of Hydrazine”,J. of Chemical and Engineer Data, No.4, October,1961,Vol.6.
    19.沈政憲、袁曉峰,聯胺熱分解之反應動力分析,成功大學航太所博士論文,九十三學年度。
    20.C.F. Sayer, “The Induction Period of Decomposition of Hydrazine on The Shell 405 Catalyst,” Rocket Propulsion Establishment, Technical Note, No. 236, April, 1973
    21.P.J. Marteney, and A.S. Kesten, “Catalyst Particle Wetting and Breakup in Hydrazine System,” J. Spacecraft 13, No. 7, P430, 1976.AIAA-76-628
    22.P.J. Marteney, and A.S. Kesten, “Effect of Catalyst Condition on Wetting and Breakup in Hydrazine System”,AIAA,No.83-1382.
    23.游程暉、袁曉峰,聯胺/Shell 405反應特性的研究,成功大學航太所碩士論文,八十二學年度。
    24.沈政憲、袁曉峰,氨分解率對聯胺推進器推力產生之實驗觀察,成功大學航太所碩士論文,八十三學年度。
    25.劉書帆、袁曉峰,低推力聯胺推進器之設計參數探討,成功大學航太所碩士論文,八十五學年度。
    26.Shell Chemical Company, “Shell 405 Catalyst for Catalytic Hydrazine Decomposition Reactors,” Technical Bulletin, SC: 49-84, 1984.
    27.Olin Corporation, “Product Data-Ultra Pure Hydrazine”
    28.“Military Specification-Propellant, Hydrazine”, MIL-P-26536D, July, 1987.
    29 .R.R. Schreib, T.K. Pugmire, and S.G. Chapin, “The Hybrid (Hydrazine) Resistojet,” AIAA-69-496, 1969.
    30. C.F. Sayer, and G.R. Southern, “The Comparative Testing of the Shell 405, CNESRO-1 and PRE 72/1 Hydrazine Decomposition catalyst,” AIAA-73-1266, 1973.
    31.W.L. Petty, “Variation in Shell 405 Catalyst Physical Characteristics,” AFRPL-TR-73-56, 1973.
    32.A.S. Kesten “Theory and Intuition in Hydrazine Reactor Technology”,AIAA,No.77-845.
    33.P.R. Rice and P. Williams, ”Hydrazine Catalyst Improvement”,AIAA,No.71-714
    34.N.L. Munjal and M.G. Parvatiyar, ”Catalyst Activity of Ignition Catalysts in Hybrid Propellant Combustion”, J. Spacecraft, No.1,P.54, January, 1976, Vol.14
    35.M.J. Russi ,”A Survey of Monopropellant Hydrazine Technolgy”,AIAA,No.73-1263
    36.M.E. Ellion, D.P. Frizell, and R.A. Meese, “Hydrazine Thruster: Present Limitations and Possible Solutions”, AIAA, No.73-1265.
    37.B.W. Schmitz, D.A. Williams, W. W. Smith, and D. Maybee, “Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst”, AIAA, No.66-594
    38.B. Portejoie, and R. Valentini , “CNESRO Catalyst for Hydrazine Space Thrusters”, AIAA, No. 75-1234.
    39.N.C. Newton and D.D.Huxtable, “Shell 405 Catalyst Improvement Substrate Evaluation”,1972

    下載圖示 校內:立即公開
    校外:2005-08-06公開
    QR CODE