簡易檢索 / 詳目顯示

研究生: 張邵涵
Chang, Shao-Han
論文名稱: 於創傷症候群大鼠模式探討創傷壓力相關之恐懼時間變化性與調控
The Temporal Profiling and Modulation of Traumatic Stress Related Fears in a Rat Model of Posttraumatic Stress Disorder
指導教授: 徐百川
Shyu, Bai-Chuang
共同指導教授: 蕭富仁
Shaw, Fu-Zen
學位類別: 博士
Doctor
系所名稱: 醫學院 - 跨領域神經科學國際博士學位學程
TIGP on The Interdisciplinary Neuroscience
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 113
中文關鍵詞: 創傷後壓力症候群腦波創傷記憶恐懼時間變化性
外文關鍵詞: PTSD, brain synchrony, traumatic memory, fear, temporal development
ORCID: 0000-0002-8404-286X
ResearchGate: https://www.researchgate.net/profile/Shao-Han-Chang
相關次數: 點閱:96下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 創傷後壓力症候群(Posttraumatic stress disorder, PTSD)是一種複雜綜合症,可能在接觸危及生命的事件後發生。一些研究已經顯示了創傷後的疾病狀態會造成生理,情緒和認知失調。幾個證據表明,恐懼記憶異常可能在創傷後症候群的病理過程中具有極重要角色,含括過於強化的恐懼記憶和恐懼記憶的消退異常。前人研究顯示恐懼記憶不是固態的;恐懼記憶的形成會隨著時間的推移而變化。此外,先前的研究顯示,恐懼表達可以用腦電圖(EEG)特徵來表徵,並且與θ(4Hz)和γ(30-70Hz)活動具有強烈相關性。然而,創傷後病理性恐懼記憶的形成與潛在腦電圖特徵之間的關係仍然很大程度上未知。在本研究當中,我們假設創傷壓力暴露後,在創傷後壓力症候群動物模式中異常的恐懼記憶形成動態變化可以透過腦電圖量測來反映早期和晚期階段。
    我們使用單一連續刺激壓力並配合腳電擊(single-prolonged stress & footshock, SPS&FS)之PTSD大鼠創傷症候群模式。此模式當中將動物約束2小時,而後強迫游泳20分鐘,之後將大鼠暴露於乙醚中直至失去意識,再將動物移至電擊箱中直至動物醒來,給予腳電擊(每分鐘2次電擊(1.5mA)其長度1秒(總共5分鐘,10次電擊))。為了量測創傷後動物模型中異常恐懼的時間變化,我們將動物再次暴露於創傷情境並同時進行腦電圖記錄,紀錄時間點可區分為早期(經歷創傷壓力後10、30分鐘、2、4、6小時)和晚期(經歷創傷壓力後1、3、7和14天)。我們的動物行為量測結果顯示SPS&FS大鼠在連續恐懼消退試驗中恐懼未消退仍表現出持續的恐懼反應,而在動物行為實驗曠野實驗(Open field test,OF),舉臂式十字迷宮(Elevated plus-maze,EPM)和強迫游泳測試(Forced swimming test, FST)創傷動物表現更高的焦慮和抑鬱之PTSD表型。SPS&FS暴露後觀察腦電圖特徵:在早期階段(SPS&FS後10分鐘和30分鐘)觀察到恐懼表現與δ(0.5-4Hz),θ(5-8Hz)和γ(> 30Hz)的活動具有高度相關,而創傷壓力後2-4小時開始轉變為δ活動並持續至創傷壓力後第14天,此δ活動的增量大小與恐懼表達強度有正向相關。目前的動物模式結果顯示在創傷壓力暴露後,可藉由量測腦波變化顯示出恐懼記憶與時間變化相關性,並可區分出早期與晚期。基因表現分析和c-FOS蛋白標記亦顯示早期與晚期的變化性。異常恐懼的時間軸分析有助於說明創傷後壓力症候群中病理性恐懼記憶的形成與時間相關性,此研究結果有助於了解此種複雜綜合症的預後和治療。

    Posttraumatic stress disorder (PTSD) is a complex syndrome, which may occur after life-threatening event exposure. Fear memory abnormalities may play a vital role in the pathological course of PTSD. It was indicated that fear memories are not rigid; the retrieval of fear memory may change over time. Furthermore, studies suggested that the theta (4Hz) activities highly correlated with fear expression. However, the relation between the pathological fear memory and potential brain wave features in PTSD remains largely unknown. Here, we hypothesized that after traumatic stress exposure, the longitudinal dynamic changes of abnormal fears in PTSD animal models could be reflected by local field potentials (LFPs) measurements in early and late phases.
    In our study, we use a well-established modified single prolonged stress (SPS&FS) PTSD rat model. Animals were restrained for 2 hrs and followed by 20 mins forced swimming, after that rats were exposed to diethyl ether until lose consciousness, then animals are kept in conditioning chamber until they awake, foockshock was applied after awaking for fear conditioning. To characterize the temporal changes after traumatic stress exposure, we characterized brain wave features while context re-exposure with freezing behavior at early (10 mins, 30 mins, 2,4, 6 hrs) and late phases (day 1, 3, 7, and 14). Our results indicate that SPS & FS rats showed co-morbid PTSD phenotypes including significantly higher levels of anxiety, depression, and anhedonia, and impaired fear extinction. Time-dependent inhibitory delta (0.5–4 Hz) activities were observed in early phases (10 and 30 mins post-SPS & FS), whereas continuous delta activities predominated 2 hrs after traumatic stress exposure and persisted until day 14, the magnitudes of delta activities correlated with fear levels. Besides, transcriptome-level gene analysis and c-Fos protein labeling also indicated the temporal phase differences from early to late phases.
    The longitudinal profiling of abnormal fears with brain wave correlates may help illustrate the time-dependent pathological fear memory retrieval in PTSD and may also help find better intervention strategies for this complex syndrome.

    中文摘要 i Abstract ii Acknowledgment iv Table of Contents v List of Tables viii List of Figures ix 1. Introduction 1 1.1 Importance of understanding abnormal fears in PTSD pathology 1 1.2 Critical brain regions involved in stress-affected fear regulation in PTSD 2 1.3 Neurobiological basis for stress-induced longitudinal memory encoding 4 1.4 Temporal dynamics and molecular profiling in PTSD 6 1.5 Transcranial direct current (tDCS) and PTSD treatments 7 1.6 PTSD animal models 8 2. Materials and methods 10 2.1 Animals 10 2.2 Preparation of SPS&FS animal model 10 2.3 Freezing behavior measurement 10 2.3.1 Fear extinction measurement for FS and SPS&FS models 10 2.3.2 Context re-exposure with auditory neutral tone CS+ after SPS&FS 11 2.4 PTSD phenotype measurement 11 2.4.1 OF test 12 2.4.2 EPM test 12 2.4.3 FST test 12 2.4.4 SP test 12 2.5 Immunohistochemistry 13 2.5.1 Immunostaining 13 2.5.2 The enzyme-linked immunosorbent assay (ELISA) for measuring serum corticosterone, adrenocorticotropic hormone (ACTH) and corticotropin-releasing hormone (CRH) levels 14 2.6 Surgery and recording 14 2.6.1 Electrode implantations and local field potentials (LFPs) recordings 14 2.6.2 LFPs recordings and analysis 15 2.7 Transcranial direct current stimulation (tDCS) application 17 2.7.1 tDCS delivery and setting 17 2.7.2 Recording of evoked field potentials for measuring tDCS effects 17 2.7.4 tDCS application after SPS&FS exposure 18 2.8 Next-generation gene sequencing 18 2.8.1 Context re-exposure after SPS&FS or FS 18 2.8.2 Tissue collection and RNA extraction 18 2.9 Data quantification and analysis 20 3. Results 22 3.1 SPS & FS animal model preparation and impaired fear memory extinction after SPS & FS exposure 22 3.2 The heterogeneous phenotypes in the PTSD model 22 3.3 Temporal dynamics after SPS&FS exposure and brain wave features of freezing behavior 24 3.3.1 Temporal changes of freezing behavior in the SPS&FS and FS groups 24 3.3.2 Temporal brain wave activities characterized in the SPS&FS and FS groups 25 3.3.3 Temporal changes of regional correlation and asymmetric delta activity 26 3.3.4 Temporal C-fos expression post SPS&FS exposure 28 3.4 PTSD maladaptive symptoms were improved by transcranial direct current stimulation (tDCS) 28 3.4.1 Evaluation of tDCS cathodal and anodal application 28 3.4.2 Fear levels and brain wave features after tDCS application in SPS&FS animals 29 3.4.3 PTSD maladaptive symptoms were alleviated by tDCS 30 3.5 Next-generation gene sequencing 31 3.5.1 The study paradigm for understanding the temporal alternations after SPS&FS or FS exposure, freezing levels and tissue collection in the two models 31 3.5.2 Analysis of the DEGs in the mPFC after SPS&FS or FS exposure 32 3.5.3 Analysis of the biological processes at the early and late phases after SPS&FS or FS exposure 32 3.5.4 Analysis of temporal DEGs expression in the early and late phases after SPS&FS or FS exposure 34 3.5.5 Canonical analysis of metabolic and signaling pathways involved in the early and late metabolic processes after SPS&FS or FS exposure 36 3.5.6 The network analysis represents temporal alternations after SPS&FS or FS exposure 37 3.5.7 Stage-specific pathways involved in susceptibility to PTSD and nonpathological learned fears 39 4. Discussion 41 4.1 The heterogeneous phenotypes of PTSD model and comparison with FS model 44 4.2 Temporal dynamics featured by brain wave activities after traumatic stress exposure 45 4.3 The modulational effects of tDCS and alleviation of PTSD phenotypes 46 4.4 Temporal dynamics featured by genetic profiling after traumatic stress exposure 47 4.5 Study limitation and future works 53 5. References 103

    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition: (DSM-5) (American Psychiatric Association, 2013).
    Abend, R., Jalon, I., Gurevitch, G., Sar-El, R., Shechner, T., Pine, D.S., Hendler, T., and Bar-Haim, Y. (2016). Modulation of fear extinction processes using transcranial electrical stimulation. Transl Psychiatry 6, e913. 10.1038/tp.2016.197.
    Arvaniti, K., Huang, Q., and Richard, D. (2001). Effects of leptin and corticosterone on the expression of corticotropin-releasing hormone, agouti-related protein, and proopiomelanocortin in the brain of ob/ob mouse. Neuroendocrinology 73, 227-236. 10.1159/000054639.
    Bangasser, D.A., Dong, H., Carroll, J., Plona, Z., Ding, H., Rodriguez, L., McKennan, C., Csernansky, J.G., Seeholzer, S.H., and Valentino, R.J. (2017). Corticotropin-releasing factor overexpression gives rise to sex differences in Alzheimer's disease-related signaling. Mol Psychiatry 22, 1126-1133. 10.1038/mp.2016.185.
    Bassetti, D., Luhmann, H.J., and Kirischuk, S. (2021). Presynaptic GABAB receptor-mediated network excitation in the medial prefrontal cortex of Tsc2(+/-) mice. Pflugers Arch 473, 1261-1271. 10.1007/s00424-021-02576-5.
    Begic, D., Hotujac, L., and Jokic-Begic, N. (2001). Electroencephalographic comparison of veterans with combat-related post-traumatic stress disorder and healthy subjects. Int J Psychophysiol 40, 167-172.
    Benjet, C., Bromet, E., Karam, E.G., Kessler, R.C., McLaughlin, K.A., Ruscio, A.M., Shahly, V., Stein, D.J., Petukhova, M., Hill, E., et al. (2016). The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol Med 46, 327-343. 10.1017/S0033291715001981.
    Bergamini, C.M., Gambetti, S., Dondi, A., and Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10, 1611-1626. 10.2174/1381612043384664.
    Bikson, M., Bulow, P., Stiller, J.W., Datta, A., Battaglia, F., Karnup, S.V., and Postolache, T.T. (2008). Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Curr Treat Options Neurol 10, 377-385.
    Bonne, O., Grillon, C., Vythilingam, M., Neumeister, A., and Charney, D.S. (2004). Adaptive and maladaptive psychobiological responses to severe psychological stress: implications for the discovery of novel pharmacotherapy. Neurosci Biobehav Rev 28, 65-94. 10.1016/j.neubiorev.2003.12.001.
    Boos, C.J., Jaumdally, R.J., MacFadyen, R.J., Varma, C., and Lip, G.Y. (2007). Circulating endothelial cells and von Willebrand factor as indices of endothelial damage/dysfunction in coronary artery disease: a comparison of central vs. peripheral levels and effects of coronary angioplasty. J Thromb Haemost 5, 630-632. 10.1111/j.1538-7836.2007.02341.x.
    Bouvier, E., Brouillard, F., Molet, J., Claverie, D., Cabungcal, J.H., Cresto, N., Doligez, N., Rivat, C., Do, K.Q., Bernard, C., et al. (2017). Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression. Mol Psychiatry 22, 1701-1713. 10.1038/mp.2016.144.
    Breen, M.S., Maihofer, A.X., Glatt, S.J., Tylee, D.S., Chandler, S.D., Tsuang, M.T., Risbrough, V.B., Baker, D.G., O'Connor, D.T., Nievergelt, C.M., and Woelk, C.H. (2015). Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry 20, 1538-1545. 10.1038/mp.2015.9.
    Bremner, J.D., Licinio, J., Darnell, A., Krystal, J.H., Owens, M.J., Southwick, S.M., Nemeroff, C.B., and Charney, D.S. (1997). Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 154, 624-629. 10.1176/ajp.154.5.624.
    Burke, J.F., Zaghloul, K.A., Jacobs, J., Williams, R.B., Sperling, M.R., Sharan, A.D., and Kahana, M.J. (2013). Synchronous and asynchronous theta and gamma activity during episodic memory formation. J Neurosci 33, 292-304. 10.1523/JNEUROSCI.2057-12.2013.
    Careaga, M.B.L., Girardi, C.E.N., and Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neurosci Biobehav Rev 71, 48-57. 10.1016/j.neubiorev.2016.08.023.
    Chen, S.D., Wang, Y.L., Liang, S.F., and Shaw, F.Z. (2016). Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats. Front Behav Neurosci 10, 129. 10.3389/fnbeh.2016.00129.
    Cho, J.H., Huang, B.S., and Gray, J.M. (2016). RNA sequencing from neural ensembles activated during fear conditioning in the mouse temporal association cortex. Sci Rep 6, 31753. 10.1038/srep31753.
    Cook, F., Ciorciari, J., Varker, T., and Devilly, G.J. (2009). Changes in long term neural connectivity following psychological trauma. Clin Neurophysiol 120, 309-314. 10.1016/j.clinph.2008.11.021.
    Cray, C., Zaias, J., and Altman, N.H. (2009). Acute phase response in animals: a review. Comp Med 59, 517-526.
    D'Urso, G., Mantovani, A., Patti, S., Toscano, E., and de Bartolomeis, A. (2018). Transcranial Direct Current Stimulation in Obsessive-Compulsive Disorder, Posttraumatic Stress Disorder, and Anxiety Disorders. J ECT 34, 172-181. 10.1097/YCT.0000000000000538.
    Dayan, J., Rauchs, G., and Guillery-Girard, B. (2017). Rhythms dysregulation: A new perspective for understanding PTSD? J Physiol Paris. 10.1016/j.jphysparis.2017.01.004.
    de Guia, R.M., Rose, A.J., and Herzig, S. (2014). Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Investig 19, 117-128. 10.1515/hmbci-2014-0021.
    Desmedt, A., Marighetto, A., and Piazza, P.V. (2015). Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder. Biol Psychiatry 78, 290-297. 10.1016/j.biopsych.2015.06.017.
    Diamond, D.M., Campbell, A.M., Park, C.R., Halonen, J., and Zoladz, P.R. (2007). The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast 2007, 60803. 10.1155/2007/60803.
    Do Monte, F.H., Quirk, G.J., Li, B., and Penzo, M.A. (2016). Retrieving fear memories, as time goes by. Mol Psychiatry 21, 1027-1036. 10.1038/mp.2016.78.
    Dohrenwend, B.P., Turner, J.B., Turse, N.A., Adams, B.G., Koenen, K.C., and Marshall, R. (2006). The psychological risks of Vietnam for U.S. veterans: a revisit with new data and methods. Science 313, 979-982. 10.1126/science.1128944.
    Domi, E., Uhrig, S., Soverchia, L., Spanagel, R., Hansson, A.C., Barbier, E., Heilig, M., Ciccocioppo, R., and Ubaldi, M. (2016). Genetic Deletion of Neuronal PPARgamma Enhances the Emotional Response to Acute Stress and Exacerbates Anxiety: An Effect Reversed by Rescue of Amygdala PPARgamma Function. J Neurosci 36, 12611-12623. 10.1523/JNEUROSCI.4127-15.2016.
    Duzel, E., Penny, W.D., and Burgess, N. (2010). Brain oscillations and memory. Curr Opin Neurobiol 20, 143-149. 10.1016/j.conb.2010.01.004.
    Eadie, B.D., Redila, V.A., and Christie, B.R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 486, 39-47. 10.1002/cne.20493.
    Epel, E., Lapidus, R., McEwen, B., and Brownell, K. (2001). Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 26, 37-49. 10.1016/s0306-4530(00)00035-4.
    Fani, N., Tone, E.B., Phifer, J., Norrholm, S.D., Bradley, B., Ressler, K.J., Kamkwalala, A., and Jovanovic, T. (2012). Attention bias toward threat is associated with exaggerated fear expression and impaired extinction in PTSD. Psychol Med 42, 533-543. 10.1017/S0033291711001565.
    Fregni, F., and Pascual-Leone, A. (2007). Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3, 383-393. 10.1038/ncpneuro0530.
    Freitas, C., Mondragon-Llorca, H., and Pascual-Leone, A. (2011). Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future. Exp Gerontol 46, 611-627. 10.1016/j.exger.2011.04.001.
    Gao, J., Wang, W.Y., Mao, Y.W., Graff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105-1109. 10.1038/nature09271.
    Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19, 534. 10.1186/s12859-018-2486-6.
    Glover, E.M., Jovanovic, T., and Norrholm, S.D. (2015). Estrogen and extinction of fear memories: implications for posttraumatic stress disorder treatment. Biol Psychiatry 78, 178-185. 10.1016/j.biopsych.2015.02.007.
    Grabe, H.J., Spitzer, C., Schwahn, C., Marcinek, A., Frahnow, A., Barnow, S., Lucht, M., Freyberger, H.J., John, U., Wallaschofski, H., et al. (2009). Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry 166, 926-933. 10.1176/appi.ajp.2009.08101542.
    Guderian, S., Schott, B.H., Richardson-Klavehn, A., and Duzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proc Natl Acad Sci U S A 106, 5365-5370. 10.1073/pnas.0900289106.
    Hales, C.A., Stuart, S.A., Anderson, M.H., and Robinson, E.S. (2014). Modelling cognitive affective biases in major depressive disorder using rodents. Br J Pharmacol 171, 4524-4538. 10.1111/bph.12603.
    Hanslmayr, S., and Staudigl, T. (2014). How brain oscillations form memories--a processing based perspective on oscillatory subsequent memory effects. Neuroimage 85 Pt 2, 648-655. 10.1016/j.neuroimage.2013.05.121.
    Hendriksen, H., Olivier, B., and Oosting, R.S. (2014). From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. Eur J Pharmacol 732, 139-158. 10.1016/j.ejphar.2014.03.031.
    Henry, R.A., Hughes, S.M., and Connor, B. (2007). AAV-mediated delivery of BDNF augments neurogenesis in the normal and quinolinic acid-lesioned adult rat brain. Eur J Neurosci 25, 3513-3525. 10.1111/j.1460-9568.2007.05625.x.
    Hetman, M., and Kharebava, G. (2006). Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6, 787-799. 10.2174/156802606777057553.
    Horch, H.W. (2004). Local effects of BDNF on dendritic growth. Rev Neurosci 15, 117-129.
    Huang, C.F., Chiu, S.Y., Huang, H.W., Cheng, B.H., Pan, H.M., Huang, W.L., Chang, H.H., Liao, C.C., Jiang, S.T., and Su, Y.C. (2019). A reporter mouse for non-invasive detection of toll-like receptor ligands induced acute phase responses. Sci Rep 9, 19065. 10.1038/s41598-019-55281-w.
    Huang, H.Y., Lee, H.W., Chen, S.D., and Shaw, F.Z. (2012). Lamotrigine ameliorates seizures and psychiatric comorbidity in a rat model of spontaneous absence epilepsy. Epilepsia 53, 2005-2014. 10.1111/j.1528-1167.2012.03664.x.
    Imanaka, A., Morinobu, S., Toki, S., and Yamawaki, S. (2006). Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173, 129-137. 10.1016/j.bbr.2006.06.012.
    Ira, E., Zanoni, M., Ruggeri, M., Dazzan, P., and Tosato, S. (2013). COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 38, 366-380. 10.1503/jpn.120178.
    Ironside, M., O'Shea, J., Cowen, P.J., and Harmer, C.J. (2016). Frontal Cortex Stimulation Reduces Vigilance to Threat: Implications for the Treatment of Depression and Anxiety. Biol Psychiatry 79, 823-830. 10.1016/j.biopsych.2015.06.012.
    Iwamoto, Y., Morinobu, S., Takahashi, T., and Yamawaki, S. (2007). Single prolonged stress increases contextual freezing and the expression of glycine transporter 1 and vesicle-associated membrane protein 2 mRNA in the hippocampus of rats. Prog Neuropsychopharmacol Biol Psychiatry 31, 642-651. 10.1016/j.pnpbp.2006.12.010.
    Jang, K.I., Shim, M., Lee, S.M., Huh, H.J., Huh, S., Joo, J.Y., Lee, S.H., and Chae, J.H. (2017). Increased beta power in the bereaved families of the Sewol ferry disaster: A paradoxical compensatory phenomenon? A two-channel electroencephalography study. Psychiatry Clin Neurosci 71, 759-768. 10.1111/pcn.12546.
    Ji, L.L., Tong, L., Peng, J.B., Jin, X.H., Wei, D., Xu, B.K., and Wang, Z.Y. (2014). Changes in the expression of the vitamin D receptor and LVSCCA1C in the rat hippocampus submitted to single prolonged stress. Mol Med Rep 9, 1165-1170. 10.3892/mmr.2014.1934.
    Jokic-Begic, N., and Begic, D. (2003). Quantitative electroencephalogram (qEEG) in combat veterans with post-traumatic stress disorder (PTSD). Nord J Psychiatry 57, 351-355. 10.1080/08039480310002688.
    Jones, N.C., Salzberg, M.R., Kumar, G., Couper, A., Morris, M.J., and O'Brien, T.J. (2008). Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation. Exp Neurol 209, 254-260. 10.1016/j.expneurol.2007.09.026.
    Karalis, N., Dejean, C., Chaudun, F., Khoder, S., Rozeske, R.R., Wurtz, H., Bagur, S., Benchenane, K., Sirota, A., Courtin, J., and Herry, C. (2016). 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19, 605-612. 10.1038/nn.4251.
    Kemp, A.H., Griffiths, K., Felmingham, K.L., Shankman, S.A., Drinkenburg, W., Arns, M., Clark, C.R., and Bryant, R.A. (2010). Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biol Psychol 85, 350-354. 10.1016/j.biopsycho.2010.08.001.
    Khan, S., and Liberzon, I. (2004). Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology (Berl) 172, 225-229. 10.1007/s00213-003-1634-4.
    Kim, H., Kim, H.S., and Kaang, B.K. (2018). Elevated contextual fear memory by SIRT6 depletion in excitatory neurons of mouse forebrain. Mol Brain 11, 49. 10.1186/s13041-018-0391-6.
    Kim, H., Kim, S., Choi, J.E., Han, D., Koh, S.M., Kim, H.S., and Kaang, B.K. (2019). Decreased Neuron Number and Synaptic Plasticity in SIRT3-Knockout Mice with Poor Remote Memory. Neurochem Res 44, 676-682. 10.1007/s11064-017-2417-3.
    Kimoto, S., Bazmi, H.H., and Lewis, D.A. (2014). Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry 171, 969-978. 10.1176/appi.ajp.2014.14010004.
    Koenen, K.C., Uddin, M., Chang, S.C., Aiello, A.E., Wildman, D.E., Goldmann, E., and Galea, S. (2011). SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress Anxiety 28, 639-647. 10.1002/da.20825.
    Kohda, K., Harada, K., Kato, K., Hoshino, A., Motohashi, J., Yamaji, T., Morinobu, S., Matsuoka, N., and Kato, N. (2007). Glucocorticoid receptor activation is involved in producing abnormal phenotypes of single-prolonged stress rats: a putative post-traumatic stress disorder model. Neuroscience 148, 22-33. 10.1016/j.neuroscience.2007.05.041.
    Lai, K.O., and Ip, N.Y. (2009). Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol 19, 275-283. 10.1016/j.conb.2009.04.009.
    Liberzon, I., Krstov, M., and Young, E.A. (1997). Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22, 443-453.
    Liberzon, I., Lopez, J.F., Flagel, S.B., Vazquez, D.M., and Young, E.A. (1999). Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11, 11-17.
    Lin, L.C., and Sibille, E. (2015). Somatostatin, neuronal vulnerability and behavioral emotionality. Mol Psychiatry 20, 377-387. 10.1038/mp.2014.184.
    Lis, S., Thome, J., Kleindienst, N., Mueller-Engelmann, M., Steil, R., Priebe, K., Schmahl, C., Hermans, D., and Bohus, M. (2020). Generalization of fear in post-traumatic stress disorder. Psychophysiology 57, e13422. 10.1111/psyp.13422.
    Locci, A., and Pinna, G. (2019). Stimulation of Peroxisome Proliferator-Activated Receptor-alpha by N-Palmitoylethanolamine Engages Allopregnanolone Biosynthesis to Modulate Emotional Behavior. Biol Psychiatry 85, 1036-1045. 10.1016/j.biopsych.2019.02.006.
    McFarlane, A.C., Lawrence-Wood, E., Van Hooff, M., Malhi, G.S., and Yehuda, R. (2017). The Need to Take a Staging Approach to the Biological Mechanisms of PTSD and its Treatment. Curr Psychiatry Rep 19, 10. 10.1007/s11920-017-0761-2.
    Miguel, T.T., Gomes, K.S., and Nunes-de-Souza, R.L. (2014). Tonic modulation of anxiety-like behavior by corticotropin-releasing factor (CRF) type 1 receptor (CRF1) within the medial prefrontal cortex (mPFC) in male mice: role of protein kinase A (PKA). Horm Behav 66, 247-256. 10.1016/j.yhbeh.2014.05.003.
    Mikics, E., Baranyi, J., and Haller, J. (2008). Rats exposed to traumatic stress bury unfamiliar objects--a novel measure of hyper-vigilance in PTSD models? Physiol Behav 94, 341-348. 10.1016/j.physbeh.2008.01.023.
    Milad, M.R., Rauch, S.L., Pitman, R.K., and Quirk, G.J. (2006). Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73, 61-71. 10.1016/j.biopsycho.2006.01.008.
    Minichiello, L. (2009). TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10, 850-860. 10.1038/nrn2738.
    Misic, B., Dunkley, B.T., Sedge, P.A., Da Costa, L., Fatima, Z., Berman, M.G., Doesburg, S.M., McIntosh, A.R., Grodecki, R., Jetly, R., et al. (2016). Post-Traumatic Stress Constrains the Dynamic Repertoire of Neural Activity. J Neurosci 36, 419-431. 10.1523/JNEUROSCI.1506-15.2016.
    Morgan, M.A., Romanski, L.M., and LeDoux, J.E. (1993). Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163, 109-113.
    Murphy, D., and Smith, K.V. (2018). Treatment Efficacy for Veterans With Posttraumatic Stress Disorder: Latent Class Trajectories of Treatment Response and Their Predictors. J Trauma Stress 31, 753-763. 10.1002/jts.22333.
    Mynard, V., Latchoumanin, O., Guignat, L., Devin-Leclerc, J., Bertagna, X., Barre, B., Fagart, J., Coqueret, O., and Catelli, M.G. (2004). Synergistic signaling by corticotropin-releasing hormone and leukemia inhibitory factor bridged by phosphorylated 3',5'-cyclic adenosine monophosphate response element binding protein at the Nur response element (NurRE)-signal transducers and activators of transcription (STAT) element of the proopiomelanocortin promoter. Mol Endocrinol 18, 2997-3010. 10.1210/me.2003-0417.
    Ney, L.J., Matthews, A., Bruno, R., and Felmingham, K.L. (2018). Modulation of the endocannabinoid system by sex hormones: Implications for posttraumatic stress disorder. Neurosci Biobehav Rev 94, 302-320. 10.1016/j.neubiorev.2018.07.006.
    Nicholson, A.A., Ros, T., Frewen, P.A., Densmore, M., Theberge, J., Kluetsch, R.C., Jetly, R., and Lanius, R.A. (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. Neuroimage Clin 12, 506-516. 10.1016/j.nicl.2016.07.006.
    Nieto, R., Kukuljan, M., and Silva, H. (2013). BDNF and schizophrenia: from neurodevelopment to neuronal plasticity, learning, and memory. Front Psychiatry 4, 45. 10.3389/fpsyt.2013.00045.
    Nillni, Y.I., Pineles, S.L., Patton, S.C., Rouse, M.H., Sawyer, A.T., and Rasmusson, A.M. (2015). Menstrual cycle effects on psychological symptoms in women with PTSD. J Trauma Stress 28, 1-7. 10.1002/jts.21984.
    Nisbett, K.E., and Pinna, G. (2018). Emerging Therapeutic Role of PPAR-alpha in Cognition and Emotions. Front Pharmacol 9, 998. 10.3389/fphar.2018.00998.
    Nitsche, M.A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., Tergau, F., and Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97, 3109-3117. 10.1152/jn.01312.2006.
    Nitsche, M.A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F., and Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553, 293-301. 10.1113/jphysiol.2003.049916.
    Novakovic, V., Sher, L., Lapidus, K.A., Mindes, J., J, A.G., and Yehuda, R. (2011). Brain stimulation in posttraumatic stress disorder. Eur J Psychotraumatol 2. 10.3402/ejpt.v2i0.5609.
    Oyola, M.G., and Handa, R.J. (2017). Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 20, 476-494. 10.1080/10253890.2017.1369523.
    Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljujic, M., Samali, A., and Gorman, A.M. (2016). The integrated stress response. EMBO Rep 17, 1374-1395. 10.15252/embr.201642195.
    Quirk, G.J., Garcia, R., and Gonzalez-Lima, F. (2006). Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60, 337-343. 10.1016/j.biopsych.2006.03.010.
    Quirk, G.J., Russo, G.K., Barron, J.L., and Lebron, K. (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20, 6225-6231.
    Ranieri, F., Podda, M.V., Riccardi, E., Frisullo, G., Dileone, M., Profice, P., Pilato, F., Di Lazzaro, V., and Grassi, C. (2012). Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol 107, 1868-1880. 10.1152/jn.00319.2011.
    Rauch, S.L., Shin, L.M., and Phelps, E.A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 60, 376-382. 10.1016/j.biopsych.2006.06.004.
    Ressler, K.J., Mercer, K.B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., Norrholm, S.D., Kilaru, V., Smith, A.K., Myers, A.J., et al. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470, 492-497. 10.1038/nature09856.
    Riccio, A., Li, Y., Moon, J., Kim, K.S., Smith, K.S., Rudolph, U., Gapon, S., Yao, G.L., Tsvetkov, E., Rodig, S.J., et al. (2009). Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137, 761-772. 10.1016/j.cell.2009.03.039.
    Richards, R.S., Nwose, E.U., and Bwititi, P. (2011). Biochemical basis of circadian rhythms and diseases: With emphasis on post-traumatic stress disorder. Med Hypotheses 77, 605-609. 10.1016/j.mehy.2011.06.045.
    Ritov, G., Boltyansky, B., and Richter-Levin, G. (2016). A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol Psychiatr 21, 630-641. 10.1038/mp.2015.169.
    Roozendaal, B., Hahn, E.L., Nathan, S.V., de Quervain, D.J., and McGaugh, J.L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. J Neurosci 24, 8161-8169. 10.1523/JNEUROSCI.2574-04.2004.
    Rudko, O.I., Tretiakov, A.V., Naumova, E.A., and Klimov, E.A. (2020). Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020, 8859017. 10.1155/2020/8859017.
    Rudoy, C.A., and Van Bockstaele, E.J. (2007). Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats. Prog Neuropsychopharmacol Biol Psychiatry 31, 1119-1129. 10.1016/j.pnpbp.2007.04.005.
    Sanders, J., and Nemeroff, C. (2016). The CRF System as a Therapeutic Target for Neuropsychiatric Disorders. Trends Pharmacol Sci 37, 1045-1054. 10.1016/j.tips.2016.09.004.
    Saunders, N., Downham, R., Turman, B., Kropotov, J., Clark, R., Yumash, R., and Szatmary, A. (2015). Working memory training with tDCS improves behavioral and neurophysiological symptoms in pilot group with post-traumatic stress disorder (PTSD) and with poor working memory. Neurocase 21, 271-278. 10.1080/13554794.2014.890727.
    Scheuer, S., Ising, M., Uhr, M., Otto, Y., von Klitzing, K., and Klein, A.M. (2016). FKBP5 polymorphisms moderate the influence of adverse life events on the risk of anxiety and depressive disorders in preschool children. J Psychiatr Res 72, 30-36. 10.1016/j.jpsychires.2015.10.009.
    Serova, L.I., Tillinger, A., Alaluf, L.G., Laukova, M., Keegan, K., and Sabban, E.L. (2013). Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 236, 298-312. 10.1016/j.neuroscience.2013.01.040.
    Sheridan, M.A., Fox, N.A., Zeanah, C.H., McLaughlin, K.A., and Nelson, C.A., 3rd (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proc Natl Acad Sci U S A 109, 12927-12932. 10.1073/pnas.1200041109.
    Shim, M., Im, C.H., and Lee, S.H. (2017). Disrupted cortical brain network in post-traumatic stress disorder patients: a resting-state electroencephalographic study. Transl Psychiatry 7, e1231. 10.1038/tp.2017.200.
    Shin, L.M., and Liberzon, I. (2010). The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 35, 169-191. 10.1038/npp.2009.83.
    Shumyatsky, G.P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., Battey, J.F., Dulac, C., Kandel, E.R., and Bolshakov, V.Y. (2002). Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111, 905-918. 10.1016/s0092-8674(02)01116-9.
    Silva, A.J., Kogan, J.H., Frankland, P.W., and Kida, S. (1998). CREB and memory. Annu Rev Neurosci 21, 127-148. 10.1146/annurev.neuro.21.1.127.
    Spiers, J.G., Chen, H.J., Sernia, C., and Lavidis, N.A. (2014). Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8, 456. 10.3389/fnins.2014.00456.
    Tang, S.J., Reis, G., Kang, H., Gingras, A.C., Sonenberg, N., and Schuman, E.M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99, 467-472. 10.1073/pnas.012605299.
    Thibaut, F. (2017). Anxiety disorders: a review of current literature. Dialogues Clin Neurosci 19, 87-88.
    Tyng, C.M., Amin, H.U., Malik, A.S., and Saad., M.N.M. (2016). EEG Spectral Analysis and Functional Connectivity during Learning of Science Concepts. IEEE.
    Uchida, S., Hara, K., Kobayashi, A., Otsuki, K., Yamagata, H., Hobara, T., Suzuki, T., Miyata, N., and Watanabe, Y. (2011). Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69, 359-372. 10.1016/j.neuron.2010.12.023.
    Vaisanen, J., Ihalainen, J., Tanila, H., and Castren, E. (2004). Effects of NMDA-receptor antagonist treatment on c-fos expression in rat brain areas implicated in schizophrenia. Cell Mol Neurobiol 24, 769-780. 10.1007/s10571-004-6918-7.
    van der Kolk, B.A., Pelcovitz, D., Roth, S., Mandel, F.S., McFarlane, A., and Herman, J.L. (1996). Dissociation, somatization, and affect dysregulation: the complexity of adaptation of trauma. Am J Psychiatry 153, 83-93. 10.1176/ajp.153.7.83.
    VanElzakker, M.B., Dahlgren, M.K., Davis, F.C., Dubois, S., and Shin, L.M. (2014). From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113, 3-18. 10.1016/j.nlm.2013.11.014.
    Waltereit, R., and Weller, M. (2003). Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27, 99-106. 10.1385/MN:27:1:99.
    Wang, H.N., Bai, Y.H., Chen, Y.C., Zhang, R.G., Wang, H.H., Zhang, Y.H., Gan, J.L., Peng, Z.W., and Tan, Q.R. (2015a). Repetitive Transcranial Magnetic Stimulation Ameliorates Anxiety-Like Behavior and Impaired Sensorimotor Gating in a Rat Model of Post-Traumatic Stress Disorder. Plos One 10. ARTN e0117189
    10.1371/journal.pone.0117189.
    Wang, H.N., Bai, Y.H., Chen, Y.C., Zhang, R.G., Wang, H.H., Zhang, Y.H., Gan, J.L., Peng, Z.W., and Tan, Q.R. (2015b). Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. PLoS One 10, e0117189. 10.1371/journal.pone.0117189.
    Wang, W., Liu, Y., Zheng, H., Wang, H.N., Jin, X., Chen, Y.C., Zheng, L.N., Luo, X.X., and Tan, Q.R. (2008). A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441, 237-241. 10.1016/j.neulet.2008.06.031.
    Wek, R.C., Jiang, H.Y., and Anthony, T.G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34, 7-11. 10.1042/BST20060007.
    Wen, Y., Li, B., Han, F., Wang, E., and Shi, Y. (2012). Dysfunction of calcium/calmodulin/CaM kinase IIalpha cascades in the medial prefrontal cortex in post-traumatic stress disorder. Mol Med Rep 6, 1140-1144. 10.3892/mmr.2012.1022.
    Wiegand, A., Nieratschker, V., and Plewnia, C. (2016). Genetic Modulation of Transcranial Direct Current Stimulation Effects on Cognition. Front Hum Neurosci 10, 651. 10.3389/fnhum.2016.00651.
    Williams, N.A., and Leaper, D.J. (1982). Wounds: Biology and management. New York: Oxford University Press., 71-87.
    Wu, Z., Tian, Q., Li, F., Gao, J., Liu, Y., Mao, M., Liu, J., Wang, S., Li, G., Ge, D., et al. (2016). Behavioral changes over time in post-traumatic stress disorder: Insights from a rat model of single prolonged stress. Behav Processes 124, 123-129. 10.1016/j.beproc.2016.01.001.
    Yehuda, R., Hoge, C.W., McFarlane, A.C., Vermetten, E., Lanius, R.A., Nievergelt, C.M., Hobfoll, S.E., Koenen, K.C., Neylan, T.C., and Hyman, S.E. (2015). Post-traumatic stress disorder. Nat Rev Dis Primers 1, 15057. 10.1038/nrdp.2015.57.
    Yehuda, R., and LeDoux, J. (2007). Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron 56, 19-32. 10.1016/j.neuron.2007.09.006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE