| 研究生: |
鄭芳宜 Cheng, Fang-Yi |
|---|---|
| 論文名稱: |
調節鈣鈦礦中鹵化物成分用於光催化還原二氧化碳 Modulating the Halide Composition in Perovskite for Photocatalytic Carbon Dioxide Reduction |
| 指導教授: |
鄭文惠
Cheng, Wen-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 光催化 、二氧化碳還原 、銫鉛鹵化物鈣鈦礦 、無鉛鹵化物鈣鈦礦 、鹵素調控 |
| 外文關鍵詞: | photocatalysis, carbon dioxide reduction, cesium lead halide perovskite, lead-free halide perovskite, halide composition tuning |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業化發展,大氣中二氧化碳濃度不斷增加,造成氣候變遷引起的災害日益嚴重。為了緩解氣候變遷與減少碳排放,科學上已發展出多種減碳技術,其中最具發展潛力的方式為二氧化碳的轉換。依據反應所需的能量來源,可將二氧化碳轉換技術分為光催化、熱催化與電催化三種方式。其中,光催化可直接利用太陽光進行二氧化碳的轉換,可在低碳排的情況下,將二氧化碳轉換成具附加價值的產物。
光催化反應需要考慮催化劑的能隙、活性位點及能帶位置,這些因素分別影響材料的光吸收能力、二氧化碳活化能力與氧化還原驅動力。本研究一開始選擇以銫鉛鹵化物鈣鈦礦(CsPbX3,X= Cl/Br)作為催化劑,其具可見光範圍內的能隙與適合進行二氧化碳還原反應的導帶位置。透過調控鹵素比例以改變材料的能隙與導帶位置,期望達成兩項目的:(1)降低能隙以增強光吸收;(2)提高導帶位置以提升電子的還原驅動力,藉此提升光催化活性。從研究結果發現,隨著樣品中Cl比例的增加,能隙與能帶位置皆有所改變。在兼顧光吸收與還原驅動力的條件下,CPBC_3展現出最佳的催化活性,為原本CPB材料的2.7倍。在這系列的樣品中,顯示CsPbX3 (X= Cl/Br)系列樣品的導帶位置與催化活性表現高度相關。
然而,含鉛材料的環境毒性與穩定性問題限制了其實際應用,需要尋找無鉛替代材料。本研究接著將以Cs3Bi2X9(X= Cl/Br)與Cs2AgBiX6(X= Cl/Br)為光催化劑,並透過鹵素比例調控探討能隙與導帶位置對光催化效能的影響。第一種替換方式選用與鉛具有相似離子半徑及相同電子組態的鉍作為取代元素。從能帶結構與電荷轉移特性分析中可知,CBC樣品具有最高導帶位置,能有效促進光生電子參與還原反應,獲得良好的CO產率表現,顯示Cs3Bi2X9(X= Cl/Br)系列樣品的導帶位置與催化活性亦呈高度關聯。第二種替換方式則進一步引入銀與鉍共同取代鉛,形成三維鈣鈦礦結構。實驗結果顯示,CABB與CABC的CO產率差異不大,但整體表現均優於僅以鉍取代的樣品,顯示銀元素的導入有助於提升催化反應效率。在這系列的樣品中,顯示導帶位置及能隙會與催化活性表現高度相關。
本研究在不額外添加犧牲試劑與外加電壓的情況下成功進行二氧化碳的還原反應,並經由實驗結果可確定,調控鹵素比例不僅能有效調整能帶位置與能隙大小,亦對光催化二氧化碳還原反應產生一定程度的影響。無鉛鈣鈦礦材料的導入更提供環境友善且具潛力的替代方案,展現出其在未來光催化二氧化碳轉化應用中的可行性與發展潛力。
With industrialization, the concentration of carbon dioxide in the atmosphere have risen, worsening the problem of climate change. Photocatalysis, which uses sunlight to convert carbon dioxide into valuable products, is a promising carbon reduction technology. This study first used lead-based halide perovskites (CsPbX3, X = Cl/Br) as photocatalysts. By adjusting the halide ratio, the bandgap and conduction band position were optimized to decrease the charge transfer barrier and improve reduction ability. The CPBC_3 sample showed the best catalytic performance. Due to the toxicity of lead, the study explored lead-free alternatives: Cs3Bi2X9 and Cs2AgBiX6. In Bi-substituted samples, CBC showed the highest conduction band positions and CO yield. Samples with both Ag and Bi, CABB and CABC performed even better, indicating Ag can also enhance catalytic efficiency. In the research, tuning halide ratios can effectively improve photocatalytic activity, and lead-free perovskites offer a more environmentally friendly and promising path for carbon dioxide conversion.
[1] NASA/GISS. Global Temperature. 2024. https://climate.nasa.gov/vital-signs/global-temperature/?intent=111 (accessed 2025 Feb 5).
[2] Zhang, W., Zhou, T., Ye, W., Zhang, T., Zhang, L., Wolski, P., Risbey, J., Wang, Z., Min, S.-K., Ramsay, H., Brody, M., Grimm, A., Clark, R., Ren, K., Jiang, J., Chen, X., Fu, S., Li, L., Tang, S., Hu, S. A Year Marked by Extreme Precipitation and Floods: Weather and Climate Extremes in 2024. Advances in Atmospheric Sciences, 42, 1045-1063, 2025.
[3] Quan, L. N., García de Arquer, F. P., Sabatini, R. P., Sargent, E. H. Perovskites for light emission. Adv. Mater., 30 (45), 1801996, 2018.
[4] Chen, H., Li, M., Wang, B., Ming, S., Su, J. Structure, electronic and optical properties of CsPbX3 halide perovskite: A first-principles study. Journal of Alloys and Compounds, 862, 158442, 2021.
[5] Ritchie, H., Rosado, P., Roser, M. Energy Production and Consumption. 2024. https://ourworldindata.org/energy-production-consumption (accessed 2025 Jun 1).
[6] NOAA. Atmospheric Carbon Dioxide Levels. 2024. https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=111 (accessed 2024 Nov 5).
[7] Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., Chang, S. X., Zhang, L., Rinklebe, J., Yuan, Z., Zhu, Q., Xiang, L., Tsang, D. C. W., Xu, L., Jiang, X., Liu, J., Wei, N., Kästner, M., Zou, Y., Ok, Y. S., Shen, J., Peng, D., Zhang, W., Barceló, D., Zhou, Y., Bai, Z., Li, B., Zhang, B., Wei, K., Cao, H., Tan, Z., Zhao, L.-b., He, X., Zheng, J., Bolan, N., Liu, X., Huang, C., Dietmann, S., Luo, M., Sun, N., Gong, J., Gong, Y., Brahushi, F., Zhang, T., Xiao, C., Li, X., Chen, W., Jiao, N., Lehmann, J., Zhu, Y.-G., Jin, H., Schäffer, A., Tiedje, J. M., Chen, J. M. Technologies and perspectives for achieving carbon neutrality. The Innovation, 2 (4), 100180, 2021.
[8] Anderson, K., Peters, G. The trouble with negative emissions. Science, 354 (6309), 182-183, 2016.
[9] Arora, N. K., Mishra, I. COP26: more challenges than achievements. Environmental Sustainability, 4 (4), 585-588, 2021.
[10] IEA. Global electricity generation by renewable energy technology main case. 2024. https://www.iea.org/reports/renewables-2024 (accessed 2024 Dec 2).
[11] Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y., Tan, R. R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustainable Production and Consumption, 13, 1-15, 2018.
[12] Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R. D. Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2 (1), 9-20, 2008.
[13] Jansen, D., Gazzani, M., Manzolini, G., Dijk, E. v., Carbo, M. Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 40, 167-187, 2015.
[14] Yin, C., Yan, J. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy, 162, 742-762, 2016.
[15] Jiang, L., Liu, W., Wang, R. Q., Gonzalez-Diaz, A., Rojas-Michaga, M. F., Michailos, S., Pourkashanian, M., Zhang, X. J., Font-Palma, C. Sorption direct air capture with CO2 utilization. Progress in Energy and Combustion Science, 95, 101069, 2023.
[16] Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., Jones, C. W. Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116 (19), 11840-11876, 2016.
[17] Chauvy, R., De Weireld, G. CO2 Utilization Technologies in Europe: A Short Review. Energy Technology, 8 (12), 2000627, 2020.
[18] Ahn, D., Kim, I., Lim, J.-H., Choi, J. H., Park, K.-J., Lee, J. The effect of high CO2 treatment on targeted metabolites of ‘Seolhyang’strawberry (Fragaria× ananassa) fruits during cold storage. LWT, 143, 111156, 2021.
[19] Parton, T., Bertucco, A., Elvassore, N., Grimolizzi, L. A continuous plant for food preservation by high pressure CO2. Journal of food engineering, 79 (4), 1410-1417, 2007.
[20] Xu, B., Zheng, S., Zhou, J., Wang, B., Ma, L. The application of calcium hydroxide in food industry. China Food Additives, 116 (1), 186-188, 2013.
[21] Douskova, I., Doucha, J., Livansky, K., Machat, J., Novak, P., Umysova, D., Zachleder, V., Vitova, M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Applied microbiology and biotechnology, 82, 179-185, 2009.
[22] Jin, C., Du, S., Wang, Y., Condon, J., Lin, X., Zhang, Y. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. Journal of Plant Nutrition and Soil Science, 172 (3), 418-424, 2009.
[23] Wang, Y., Darensbourg, D. J. Carbon dioxide-based functional polycarbonates: Metal catalyzed copolymerization of CO2 and epoxides. Coordination Chemistry Reviews, 372, 85-100, 2018.
[24] Sun, H., Wang, Q., Song, M. Progress in the chemical utilization of carbon dioxide. Chemical Industry and Engineering Progress, 32 (07), 1666, 2013.
[25] Omae, I. Recent developments in carbon dioxide utilization for the production of organic chemicals. Coordination Chemistry Reviews, 256 (13-14), 1384-1405, 2012.
[26] Fu, L., Ren, Z., Si, W., Ma, Q., Huang, W., Liao, K., Huang, Z., Wang, Y., Li, J., Xu, P. Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization, 66, 102260, 2022.
[27] Fujishima, A., Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (5358), 37-38, 1972.
[28] Trivedi, S., Prochowicz, D., Kalam, A., Tavakoli, M. M., Yadav, P. Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction. Renewable & Sustainable Energy Reviews, 145, 111047, 2021.
[29] Huang, H. W., Pradhan, B., Hofkens, J., Roeffaers, M. B. J., Steele, J. A. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett., 5 (4), 1107-1123, 2020.
[30] Yu, J., Zhang, L., Wang, L., Zhu, B. S-scheme Heterojunction Photocatalysts: Fundamentals and Applications; Academic Press, America, 11, 2023.
[31] Valluri, S., Claremboux, V., Kawatra, S. Opportunities and challenges in CO2 utilization. Journal of Environmental Sciences, 113, 322-344, 2022.
[32] Wang, Y., Chen, E., Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catalysis, 12 (12), 7300-7316, 2022.
[33] Fu, J., Jiang, K., Qiu, X., Yu, J., Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 32, 222-243, 2020.
[34] Shehzad, N., Tahir, M., Johari, K., Murugesan, T., Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 26, 98-122, 2018.
[35] Liu, B., Zhao, X., Terashima, C., Fujishima, A., Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics, 16 (19), 8751-8760, 2014.
[36] Perry, S. C., Leung, P.-k., Wang, L., Ponce de León, C. Developments on carbon dioxide reduction: Their promise, achievements, and challenges. Current Opinion in Electrochemistry, 20, 88-98, 2020.
[37] Nahar, S., Zain, M. F. M., Kadhum, A. A. H., Hasan, H. A., Hasan, M. R. Advances in Photocatalytic CO2 Reduction with Water: A Review. Materials, 10 (6), 629, 2017.
[38] Zhao, X., Du, L., You, B., Sun, Y. Integrated design for electrocatalytic carbon dioxide reduction. Catalysis Science & Technology, 10 (9), 2711-2720, 2020.
[39] Kong, T., Jiang, Y., Xiong, Y. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation. Chemical Society Reviews, 49 (18), 6579-6591, 2020.
[40] Li, X., Yu, J., Jaroniec, M., Chen, X. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews, 119 (6), 3962-4179, 2019.
[41] He, Y., Yin, L., Yuan, N., Zhang, G. Adsorption and activation, active site and reaction pathway of photocatalytic CO2 reduction: A review. Chemical Engineering Journal, 481, 148754, 2024.
[42] Wang, X., Hu, B., Li, Y., Zhang, G. Lead‐Free Halide Perovskite Photocatalysts for Photocatalytic CO2 Reduction: A Review. Solar RRL, 7 (18), 2300410, 2023.
[43] Lee, J., Chai, S.-P., Tan, L.-L. Perovskite paradigm shift: a green revolution with lead-free alternatives in photocatalytic CO2 reduction. ACS Energy Lett., 9 (4), 1932-1975, 2024.
[44] Habisreutinger, S. N., Schmidt‐Mende, L., Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 52 (29), 7372-7408, 2013.
[45] Fu, Y., Peng, W., Shi, X., Huang, Y. Realization of Biomimetic Materials for CO2 Reduction Based on Bioinspired Structural and Functional Design. Artificial Photosynthesis, 1, 63-80, 2024.
[46] Jena, A. K., Kulkarni, A., Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical reviews, 119 (5), 3036-3103, 2019.
[47] Wu, H.-S., Murti, B. T., Singh, J., Yang, P.-K., Tsai, M.-L. Prospects of Metal-Free Perovskites for Piezoelectric Applications. Advanced Science, 9 (12), 2104703, 2022.
[48] Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften, 14 (21), 477-485, 1926.
[49] Yi, Z., Ladi, N. H., Shai, X., Li, H., Shen, Y., Wang, M. Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications. Nanoscale Advances, 1 (4), 1276-1289, 2019.
[50] Fu, Y., Hautzinger, M. P., Luo, Z., Wang, F., Pan, D., Aristov, M. M., Guzei, I. A., Pan, A., Zhu, X., Jin, S. Incorporating large A cations into lead iodide perovskite cages: Relaxed goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS central science, 5 (8), 1377-1386, 2019.
[51] Wang, B., Navrotsky, A. Thermodynamics of cesium lead halide (CsPbX3, X= I, Br, Cl) perovskites. Thermochimica Acta, 695, 178813, 2021.
[52] Ha, S.-T., Su, R., Xing, J., Zhang, Q., Xiong, Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 8 (4), 2522-2536, 2017.
[53] Qian, J., Xu, B., Tian, W. A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics, 37, 61-73, 2016.
[54] Kovalenko, M. V., Protesescu, L., Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358 (6364), 745-750, 2017.
[55] Ball, J. M., Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nature Energy, 1 (11), 1-13, 2016.
[56] Bian, H., Liu, T., Li, D., Xu, Z., Lian, J., Chen, M., Yan, J., Liu, S. F. Unveiling the effect of interstitial dopants on CO2 activation over CsPbBr3 catalyst for efficient photothermal CO2 reduction. Chemical Engineering Journal, 435, 135071, 2022.
[57] Maekawa, T., Huang, Y.-S., Tateishi, N., Nakanishi, A., Onoe, T., Dong, Y., Waterhouse, G. I. N., Murai, K.-i., Moriga, T. Slow photon photocatalytic enhancement of H2 production in TaON inverse opal photonic crystals. Journal of Solid State Chemistry, 329, 124404, 2024.
[58] Guo, R.-t., Hu, X., Chen, X., Bi, Z.-x., Wang, J., Pan, W.-g. Recent Progress of Three-dimensionally Ordered Macroporous (3DOM) Materials in Photocatalytic Applications: A Review. Small, 19 (15), 2207767, 2023.
[59] Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Surface plasmonic‐assisted photocatalysis and optoelectronic devices with noble metal nanocrystals: design, synthesis, and applications. Advanced Functional Materials, 30 (7), 1906744, 2020.
[60] Wang, Z., Liu, J., Chen, W. Plasmonic Ag/AgBr nanohybrid: synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability. Dalton Transactions, 41 (16), 4866-4870, 2012.
[61] Zhang, Z., Zhang, L., Hedhili, M. N., Zhang, H., Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano letters, 13 (1), 14-20, 2013.
[62] Tang, R., Sun, H., Zhang, Z., Liu, L., Meng, F., Zhang, X., Yang, W., Li, Z., Zhao, Z., Zheng, R., Huang, J. Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction. Chemical Engineering Journal, 429, 132137, 2022.
[63] Xu, Y.-F., Yang, M.-Z., Chen, B.-X., Wang, X.-D., Chen, H.-Y., Kuang, D.-B., Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Journal of the American Chemical Society, 139 (16), 5660-5663, 2017.
[64] Frame, F. A., Osterloh, F. E. CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light. The Journal of Physical Chemistry C, 114 (23), 10628-10633, 2010.
[65] Johnson, F. The genetic effects of environmental lead. Mutation Research/Reviews in Mutation Research, 410 (2), 123-140, 1998.
[66] Raj, K., Das, A. P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, 79-85, 2023.
[67] Xiao, Z., Song, Z., Yan, Y. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Adv. Mater., 31 (47), 1803792, 2019.
[68] Yang, B., Chen, J., Hong, F., Mao, X., Zheng, K., Yang, S., Li, Y., Pullerits, T., Deng, W., Han, K. Lead‐free, air‐stable all‐inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 56 (41), 12471-12475, 2017.
[69] Bartel, C. J., Sutton, C., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5 (2), eaav0693, 2019.
[70] Cui, Y., Yang, L., Wu, X., Deng, J., Zhang, X., Zhang, J. Recent progress of lead-free bismuth-based perovskite materials for solar cell applications. Journal of Materials Chemistry C, 10 (44), 16629-16656, 2022.
[71] Ji, Y., She, M., Bai, X., Liu, E., Xue, W., Zhang, Z., Wan, K., Liu, P., Zhang, S., Li, J. In‐Depth Understanding of the Effect of Halogen‐Induced Stable 2D Bismuth‐Based Perovskites for Photocatalytic Hydrogen Evolution Activity. Advanced Functional Materials, 32 (31), 2201721, 2022.
[72] Alotaibi, N. H., Mustafa, G. M., Kattan, N. A., Mahmood, Q., Albalawi, H., Morsi, M., Somaily, H., Hafez, M. A., Mahmoud, H. I., Amin, M. A. DFT study of double perovskites Cs2AgBiX6 (X= Cl, Br): an alternative of hybrid perovskites. Journal of Solid State Chemistry, 313, 123353, 2022.
[73] Chen, J., Zhang, Q., Song, J., Fu, H., Gao, M., Wang, Z., Zheng, Z., Cheng, H., Liu, Y., Dai, Y. In situ synthesis of lead-free perovskite Cs3Bi2Br9/BiOBr Z-scheme heterojunction by ion exchange for efficient photocatalytic CO2 reduction. Journal of Catalysis, 442, 115874, 2025.
[74] Liu, H., Sun, J., Lin, Q., Wang, Y., Wang, S., Wang, S., Lv, Y., Wen, N., Yuan, R., Ding, Z. An Electron Bridge of Shared Atoms Mediated Cs3Bi2Br9/Bi2WO6 Z‐Scheme Heterojunction for Photocatalytic CO2 Reduction. ChemCatChem, 16 (22), e202401125, 2024.
[75] Yang, B., Chen, J., Yang, S., Hong, F., Sun, L., Han, P., Pullerits, T., Deng, W., Han, K. Lead‐free silver‐bismuth halide double perovskite nanocrystals. Angewandte Chemie, 130 (19), 5457-5461, 2018.
[76] Chen, Z., Jiang, X., Xu, H., Wang, J., Zhang, M., Pan, D., Jiang, G., Shahid, M. Z., Li, Z. Rubidium doped Cs2AgBiBr6 hierarchical microsphere for enhanced photocatalytic CO2 reduction. Small, 20 (40), 2401202, 2024.
[77] Idris, A. M., Zheng, S., Wu, L., Zhou, S., Lin, H., Chen, Z., Xu, L., Wang, J., Li, Z. A heterostructure of halide and oxide double perovskites Cs2AgBiBr6/Sr2FeNbO6 for boosting the charge separation toward high efficient photocatalytic CO2 reduction under visible-light irradiation. Chemical Engineering Journal, 446, 137197, 2022.
[78] Du, P., Wang, L., Li, J., Luo, J., Ma, Y., Tang, J., Zhai, T. Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Advanced Optical Materials, 10 (4), 2101770, 2022.
[79] Li, J., Gao, R., Gao, F., Lei, J., Wang, H., Wu, X., Li, J., Liu, H., Hua, X., Liu, S. F. Fabrication of efficient CsPbBr3 perovskite solar cells by single-source thermal evaporation. Journal of alloys and compounds, 818, 152903, 2020.
[80] Zhu, X., Yang, D., Yang, R., Yang, B., Yang, Z., Ren, X., Zhang, J., Niu, J., Feng, J., Liu, S. F. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 9 (34), 12316-12323, 2017.
[81] Wang, M., Feng, Y., Bian, J., Liu, H., Shi, Y. A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters, 692, 44-49, 2018.
[82] Chaudhary, S., Gupta, S. K., Singh Negi, C. M. Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing, 109, 104916, 2020.
[83] Im, J.-H., Kim, H.-S., Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. Apl Materials, 2 (8), 081510, 2014.
[84] Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Grotevent, M. J., Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 15 (8), 5635-5640, 2015.
[85] Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 15 (6), 3692-3696, 2015.
[86] Chaudhary, B., Kshetri, Y. K., Kim, H.-S., Lee, S. W., Kim, T.-H. Current status on synthesis, properties and applications of CsPbX3 (X= Cl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology, 32 (50), 502007, 2021.
[87] Li, X., Wu, Y., Zhang, S., Cai, B., Gu, Y., Song, J., Zeng, H. CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Advanced Functional Materials, 26 (15), 2435-2445, 2016.
[88] Deng, J. D., Xun, J., He, R. X. Facile and rapid synthesis of high performance perovskite nanocrystals CsPb(X/Br)3 (X=Cl, I) at room temperature. Optical Materials, 99, 6, 2020.
[89] Zhao, L., Ouyang, P., Yi, X., Li, G. Effects of halogen elements on a humidity sensor based on a thin film bulk acoustic wave resonator incorporated with Cs3Bi2X9 (X= Cl, Br, I) perovskites. Journal of Materials Chemistry C, 12 (6), 1988-1995, 2024.
[90] Zhang, G., Yuan, C., Li, X., Yang, L., Yang, W., Fang, R., Sun, Y., Sheng, J., Dong, F. The mechanisms of interfacial charge transfer and photocatalysis reaction over Cs3Bi2Cl9 QD/(BiO)2CO3 heterojunction. Chemical Engineering Journal, 430, 132974, 2022.