| 研究生: |
甄沛耘 Chen, Pei-Yun |
|---|---|
| 論文名稱: |
取代基在二茚并[2,1-b;2',1'-h]聯伸二苯之結構及物性影響 Substituent Effects on the Structures and Properties of Diindeno[2,1-b:2',1'-h]biphenylenes |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 聯伸二苯 、二茚并聯伸二苯 、雙自由基 |
| 外文關鍵詞: | Biphenylenes, Diindeno-fused Biphenylenes, Biradical character |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是探討不同取代基於二茚并聯伸二苯之合成、結構及物理性質分析。本實驗室23合成出二茚并聯伸二苯衍生物P2具有雙自由基性質及較高空氣穩定性。因此,本論文將化合物P2進行取代基修飾,延伸其π共軛系統,合成出一系列具有多自由基的二茚并聯伸二苯衍伸物。
成功製備目標產物12,首先藉由X-ray單晶繞射了解分子結構,發現其單鍵 (1.37 Å) 、雙鍵 (1.47 Å) 交替明顯,HOMA值遠小於1。從紫外可見光光譜可以計算出化合物12的HOMO-LUMO能隙為1.52 eV。最後由循環伏安法圖可知化合物12的第一氧化還原電位分別為0.49 V及 1.06 V,所計算出HOMO-LUMO能隙為1.55 eV。
然而,具有七員環之目標產物18於前驅物15與叔丁基鉀進行反應時無法一步合成出化合物16,推測化合物15較穩定。另一具有八員環之目標產物21則於溴化銅誘導氧化耦合反應合成前驅物19時需進行條件優化來提升產率。
In this study, the synthesis and properties of diindeno[2,1-b:2',1'-h]biphenylenes P2, P3, P4, and 12 were presented. Compounds P2-P4 and 12 were synthesized from the key precursor 10 using Friedel-Craft alkylation as the key step. The aromaticity, photophysical and electrochemical properties were affected by the substituents. The molecular structure and harmonic oscillator model of aromaticity (HOMA) indices of P2, P3 and 12 were investigated using single crystal X-ray diffraction, suggesting aromaticity of P2, P3 and 12 is influenced by the steric repulsions. The longest absorption wavelengths of P2 and 12, 2 bromo groups at 1 and 8 positions on the biphenylene moiety, are more red-shifted than those of P3 and P4 without any substituents at the corresponding position. The HOMO-LUMO energy gap of Compounds P2 and 12 exhibited higher first redox potential than P3 and P4. Within the compound series, the HOMO-LUMO energy gaps did not show remarkable difference, which were determined optically and electrochemically to be in the range of 1.52-1.55 and 1.55-1.60 eV, respectively.
The Suzuki coupling reaction of 10 with 7 gave the dialdehyde derivative 13. The following nucleophilic addition and Friedel-Craft alkylation produced dihydro compound 15, which underwent oxidative dehydrogenation to the afford 17. Unfortunately, the further oxidative dehydrogenation of 17 to obtain 18 was not successful. Attempts were made to prepared dimer 19 in the presence of CuBr2. However, the result was unsatisfactory. Further synthetic studies of 18 and 19 are underway in our group.
(1)Fawcett, J. K.; Trotter, J. Acta Crystallographica 1966, 20, 87-93.
(2)Lothrop, W. C. J. Am. Chem. Soc. 1941, 63, 1187-1191.
(3)Berris, B. C.; Lai, Y.-H.; Vollhardt, K. P. C. J. Chem. Soc., Chem. Commun. 1982, 953-954.
(4)Iyoda, M.; Humayun Kabir, S. M.; Vorasingha, A.; Kuwatani, Y.; Yoshida, M. Tetrahedron Lett. 1998, 39, 5393-5396.
(5)Schaub, T.; Radius, U. Tetrahedron Lett. 2005, 46, 8195-8197.
(6)Wang, S.-L.; Pan, M.-L.; Su, W.-S.; Wu, Y.-T. Angew. Chem. Int. Ed. 2017, 56, 14694-14697.
(7)Fix, A. G.; Chase, D. T.; Haley, M. M. In Polyarenes I; Siegel, J. S., Wu, Y.-T., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014, p 159-195.
(8)Akihiro, S.; Shunpei, N.; Hirokazu, M.; Yoshito, T. Pure Appl. Chem. 2014, 86, 517-528.
(9)Gabriel, S. Berichte der deutschen chemischen Gesellschaft 1884, 17, 1389-1396.
(10)Zhou, Q.; Carroll, P. J.; Swager, T. M. The Journal of Organic Chemistry 1994, 59, 1294-1301.
(11)Chase, D. T.; Fix, A. G.; Kang, S. J.; Rose, B. D.; Weber, C. D.; Zhong, Y.; Zakharov, L. N.; Lonergan, M. C.; Nuckolls, C.; Haley, M. M. J. Am. Chem. Soc. 2012, 134, 10349-10352.
(12)Leroux, F. R.; Berthelot, A.; Bonnafoux, L.; Panossian, A.; Colobert, F. Chemistry – A European Journal 2012, 18, 14232-14236.
(13)Greulich, T. W.; Yamaguchi, E.; Doerenkamp, C.; Lübbesmeyer, M.; Daniliuc, C. G.; Fukazawa, A.; Eckert, H.; Yamaguchi, S.; Studer, A. Chemistry – A European Journal 2017, 23, 6029-6033.
(14)Kabir, S. M. H.; Iyoda, M. Synthesis 2000, 2000, 1839-1842.
(15)Pichette Drapeau, M.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem. 2015, 127, 10733-10737.
(16)Chen, Y. y.; Chen, Z. y.; Zhang, N. n.; Chen, J. h.; Zhang, X. j.; Yan, M. Eur. J. Org. Chem. 2016, 2016, 599-606.
(17)Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. Journal of the Chemical Society, Perkin Transactions 2 1987, S1-S19.
(18)Rudebusch, G. E.; Zafra, J. L.; Jorner, K.; Fukuda, K.; Marshall, J. L.; Arrechea-Marcos, I.; Espejo, G. L.; Ponce Ortiz, R.; Gómez-García, C. J.; Zakharov, L. N.; Nakano, M.; Ottosson, H.; Casado, J.; Haley, M. M. Nature Chemistry 2016, 8, 753-759.
(19)Liu, J.; Mishra, S.; Pignedoli, C. A.; Passerone, D.; Urgel, J. I.; Fabrizio, A.; Lohr, T. G.; Ma, J.; Komber, H.; Baumgarten, M.; Corminboeuf, C.; Berger, R.; Ruffieux, P.; Müllen, K.; Fasel, R.; Feng, X. J. Am. Chem. Soc. 2019, 141, 12011-12020.
(20)Rajca, A.; Safronov, A.; Rajca, S.; Ross, C. R.; Stezowski, J. J. J. Am. Chem. Soc. 1996, 118, 7272-7279.
(21)te Grotenhuis, C.; van den Heuvel, N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem. Int. Ed. 2018, 57, 140-145.
(22)Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. s. F.; Cordeiro, C.; Gois, P. M. P. J. Am. Chem. Soc. 2012, 134, 10299-10305.
(23) 洪暉祐碩士論文:國立成功大學 民國一百零八年 七月
校內:2025-09-01公開