| 研究生: |
林琝潓 Lin, Wen-Hui |
|---|---|
| 論文名稱: |
複合材料與二次燒結提升低溫熱電材料Ag2Se之熱電性質 Thermoelectric Property Enhancement of Low-Temperature Ag2Se via Composite Materials and Two-Step Sintering |
| 指導教授: |
施士塵
Shi, Shih-Chen 林仁輝 Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 低溫熱電材料 、機械合金化 、放電等離子燒結 、二次燒結 、熱電複合材料 |
| 外文關鍵詞: | Low-temperature thermoelectric materials, Mechanical alloying, Spark plasma sintering (SPS), Secondary sintering |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對Ag2Se低溫熱電材料進行優化,透過機械合金化、二次燒結及熱電複合材料等技術,提升其熱電性能。研究結果顯示,在轉速450 rpm、合金化時間10分鐘的條件下,機械合金法可快速合成高純度Ag2Se相。經過溫度573 K的放電等離子一次燒結後,樣品的ZT值介於0.75至0.95之間,展現穩定且優異的熱電性能。透過二次燒結技術,成功提升樣品密度至99% 並提高電導率,同時透過縮小晶粒尺寸降低熱導率,使ZT值進一步提升至1.6至2.4之間。此外,本研究針對不同Ag-Se比例進行優化,在Ag56.6Se43.4比例下獲得高導電率(13 × 104 S/m)及低導熱率(0.1 W/mK)。並利用複合材料技術,將Ag56.6Se43.4作為第二相摻入Ag2Se基體時,可有效提升熱電性能,且當加入量達20% 時,ZT值達約8,展現出卓越的熱電性能。本研究證實,透過精確控制合金組成及利用二次燒結及熱電複合材料技術,可顯著提升Ag2Se的熱電性能,展現其在低溫能源回收應用中的潛力,並提升材料的穩定性與實用性,促進其產業化發展。
This study optimizes Ag2Se thermoelectric materials for low-temperature applications using mechanical alloying and secondary sintering techniques to enhance thermoelectric performance. The results indicate that mechanical alloying at a rotational speed of 450 rpm for 10 minutes efficiently synthesizes a high-purity Ag2Se phase. After initial spark plasma sintering at 573 K, the samples exhibited ZT values ranging from 0.75 to 0.95, demonstrating stable and excellent thermoelectric properties. The application of a secondary sintering process increased the sample density to 99% and improved electrical conductivity. Simultaneously, grain size reduction lowered thermal conductivity, further enhancing the ZT value to a range of 1.6 to 2.4.
1. Massetti, M.; Jiao, F.; Ferguson, A.J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J.L.; Crispin, X.; Fabiano, S. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chemical Reviews 2021, 121, 12465-12547.
2. Singh, R.; Dogra, S.; Dixit, S.; Vatin, N.I.; Bhardwaj, R.; Sundramoorthy, A.K.; Perera, H.; Patole, S.P.; Mishra, R.K.; Arya, S. Advancements in thermoelectric materials for efficient waste heat recovery and renewable energy generation. Hybrid Advances 2024, 100176.
3. Data, R.a. Thermoelectric materials market is segmented by product type (bismuth telluride, lead telluride, silicon-germanium, and others), by source (waste heat recovery, energy harvesting, and direct power generation), by application, and by region forecast to 2030. https://www.reportsanddata.com/report-detail/thermoelectric-materials-market#rd_faq 2024.
4. Bu, Z.; Zhang, X.; Hu, Y.; Chen, Z.; Lin, S.; Li, W.; Xiao, C.; Pei, Y. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature communications 2022, 13, 237.
5. Baskaran, P.; Rajasekar, M. Recent trends and future perspectives of thermoelectric materials and their applications. RSC advances 2024, 14, 21706-21744.
6. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and sustainable energy reviews 2016, 65, 698-726.
7. Rodriguez, R.; Preindl, M.; Cotton, J.S.; Emadi, A. Review and trends of thermoelectric generator heat recovery in automotive applications. IEEE Transactions on Vehicular Technology 2019, 68, 5366-5378.
8. Boccardi, S.; Ciampa, F.; Meo, M. Design and development of a heatsink for thermo-electric power harvesting in aerospace applications. Smart Materials and Structures 2019, 28, 105057.
9. Mane, P.; Atheaya, D. In Levelized cost computation of novel thermoelectric modules, International Conference on Recent Advancements in Mechanical Engineering, 2020; Springer: pp 51-62.
10. Zhang, L.; Shi, X.-L.; Yang, Y.-L.; Chen, Z.-G. Flexible thermoelectric materials and devices: From materials to applications. Materials Today 2021, 46, 62-108.
11. Jiang, J.; Zhu, H.; Niu, Y.; Zhu, Q.; Song, S.; Zhou, T.; Wang, C.; Ren, Z. Achieving high room-temperature thermoelectric performance in cubic agcute. Journal of Materials Chemistry A 2020, 8, 4790-4799.
12. Jood, P.; Chetty, R.; Ohta, M. Structural stability enables high thermoelectric performance in room temperature Ag2Se. Journal of Materials Chemistry A 2020, 8, 13024-13037.
13. Chen, J.; Liu, T.; Bao, D.; Zhang, B.; Han, G.; Liu, C.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Nanostructured monoclinic Cu2Se as a near-room-temperature thermoelectric material. Nanoscale 2020, 12, 20536-20542.
14. Jiang, Q.; Li, S.; Luo, Y.; Xin, J.; Li, S.; Li, W.; Zhao, G.; Yang, J. Ecofriendly highly robust Ag8SiSe6-based thermoelectric composites with excellent performance near room temperature. ACS Applied Materials & Interfaces 2020, 12, 54653-54661.
15. Li, J.; Hu, Q.; He, S.; Tan, X.; Deng, Q.; Zhong, Y.; Zhang, F.; Ang, R. Enhancing near-room-temperature gete thermoelectrics through In/Pb Co-doping. ACS Applied Materials & Interfaces 2021, 13, 37273-37279.
16. Chen, J.; Yuan, H.; Zhu, Y.-K.; Zheng, K.; Ge, Z.-H.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. TernaryAg2Se1–x Tex: A near-room-temperature thermoelectric material with a potentially high figure of merit. Inorganic Chemistry 2021, 60, 14165-14173.
17. Hu, H.; Xia, K.; Wang, Y.; Fu, C.; Zhu, T.; Zhao, X. Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials. Journal of Materials Science & Technology 2021, 91, 241-250.
18. Chen, J.; Sun, Q.; Bao, D.; Tian, B.-Z.; Wang, Z.; Tang, J.; Zhou, D.; Yang, L.; Chen, Z.-G. Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned cuagse secondary phase. Acta Materialia 2021, 220, 117335.
19. Mo, X.; Liao, J.; Yuan, G.; Zhu, S.; Lei, X.; Huang, L.; Zhang, Q.; Wang, C.; Ren, Z. High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping. Journal of Magnesium and Alloys 2022, 10, 1024-1032.
20. Wang, P.; Chen, J.-L.; Zhou, Q.; Liao, Y.T.; Peng, Y.; Liang, J.S.; Miao, L. Enhancing the thermoelectric performance of Ag2Se by non-stoichiometric defects. Applied Physics Letters 2022, 120, 193902.
21. Wu, Y.; Qiu, P.; Yu, Y.; Xiong, Y.; Deng, T.; Cojocaru-Miredin, O.; Wuttig, M.; Shi, X.; Chen, L. High-performance and stable AgSbTe2-based thermoelectric materials for near room temperature applications. Journal of Materiomics 2022, 8, 1095-1103.
22. Zhu, W.; Zheng, P.; Shao, Y.; Fang, W.; Wu, H.; Si, J. Enhanced average thermoelectric properties of n‑type Mg3Sb2 based materials by mixed-valence Ni doping. Journal of Alloys and Compounds 2022, 924, 166598.
23. Wang, H.; Han, G.; Zhang, B.; Chen, Y.; Liu, X.; Zhang, K.; Lu, X.; Wang, G.; Zhou, X. AgSbSe2 inclusions enabling high thermoelectric and mechanical performance in n-type Ag2Se-based composites. Acta Materialia 2023, 248, 118753.
24. Huang, Y.; Lei, J.; Chen, H.; Zhou, Z.; Dong, H.; Yang, S.; Gao, H.; Wei, T.-R.; Zhao, K.; Shi, X. Intrinsically high thermoelectric performance in near-room-temperature α-MgAgSb materials. Acta Materialia 2023, 249, 118847.
25. Lin, S.; Guo, L.; Wang, X.; Liu, Y.; Wu, Y.; Li, R.; Shao, H.; Jin, M. Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. Journal of Materiomics 2023, 9, 754-761.
26. Xiong, T.; He, H.; Zhang, Y.; Wu, Y.; Niu, C.; Rong, M. Enhancing the thermoelectric performance of MgAgSb-based materials with heavy Zn-doped. Journal of Materials Science: Materials in Electronics 2023, 34, 1632.
27. Zhao, P.; Xue, W.; Zhang, Y.; Zhi, S.; Ma, X.; Qiu, J.; Zhang, T.; Ye, S.; Mu, H.; Cheng, J. Plasticity in single-crystalline Mg3Bi2 thermoelectric material. Nature 2024, 631, 777-782.
28. Abusa, Y.; Yox, P.; Viswanathan, G.; Opare-Addo, J.; Sarkar, A.; Kyveryga, V.; Smith, E.; Lebedev, O.I.; Kovnir, K. A recipe for a great meal: A benchtop route from elemental se to superior thermoelectric β-Ag2Se. Journal of the American Chemical Society 2024, 146, 11382-11391.
29. Zhang, L.; Li, J.; Chen, H.; Feng, J.; Liu, R. Near room temperature thermoelectric performance improvement for Mg2Sn. Journal of Materials Chemistry C 2024.
30. Song, J.; Luo, P.; Sun, H.; Li, H.; Wang, C.; Niu, Y.; Jiang, J. Bismuth-free Mg3Sb2 with enhanced room-temperature thermoelectric and mechanical properties. Journal of Materiomics 2024, 10, 1101-1108.
31. Tee, S.Y.; Ponsford, D.; Lay, C.L.; Wang, X.; Wang, X.; Neo, D.C.J.; Wu, T.; Thitsartarn, W.; Yeo, J.C.C.; Guan, G. Thermoelectric silver‐based chalcogenides. Advanced Science 2022, 9, 2204624.
32. Wei, T.R.; Qiu, P.; Zhao, K.; Shi, X.; Chen, L. Ag2q‐based (q= S, Se, Te) silver chalcogenide thermoelectric materials. Advanced Materials 2023, 35, 2110236.
33. Yan, Y.-F.; Kou, S.-Q.; Yang, H.-Y.; Shu, S.-L.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: Preparation, performance, and mechanisms. International Journal of Extreme Manufacturing 2023, 5, 032006.
34. Suryanarayana, C.; Ivanov, E.; Boldyrev, V. The science and technology of mechanical alloying. Materials Science and Engineering: A 2001, 304, 151-158.
35. Kihou, K.; Kunioka, H.; Nishiate, H.; Lee, C. Thermoelectric properties of yttrium-doped Mg3 (Sb, Bi)2 synthesized by melting method. Journal of Materials Research and Technology 2021, 10, 438-444.
36. Zhang, W.; Liu, X.; Tian, Z.; Zhang, Y.; Li, X.-J.; Song, H. High thermoelectric performance of large size Bi2Te2.7Se0.3 alloy ingots. Journal of Electronic Materials 2023, 52, 6682-6689.
37. Rao, S.P.; Saw, A.K.; Chotia, C.; Okram, G.; Dayal, V. Structural and thermoelectric properties of Mn15Si26, Mn4Si7 and MnSi2, synthesized using arc-melting method. Applied Physics A 2021, 127, 621.
38. Kartika, N.L.; Septiani, A.; Rosha, M.P.; Kristiantoro, T.; Nugraha, A.R.; Mulyani, R.H. In Thermoelectric properties of Ti doping in bismuth telluride prepared by powder metallurgy process, 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2021; IEEE: pp 21-26.
39. Ivanov, A.; Osvenskii, V.; Sorokin, A.; Panchenko, V.; Bulat, L.; Akchurin, R.K. Obtaining material based on copper selenide by the methods of powder metallurgy. Russian Microelectronics 2017, 46, 545-550.
40. Poddar, V.; Dhokey, N. Evaluation of thermoelectric properties of doped β-iron disilicide prepared by the powder metallurgy technique. Transactions of the Indian Institute of Metals 2021, 74, 399-410.
41. Tarani, E.; Stathokostopoulos, D.; Karfaridis, D.; Malletzidou, L.; Sfampa, I.K.; Stergioudi, F.; Maliaris, G.; Michailidis, N.; Chrissafis, K.; Vourlias, G. Effect of ball milling time on the formation and thermal properties of Ag2Se and Cu2Se compounds. Journal of Thermal Analysis and Calorimetry 2023, 148, 13065-13081.
42. Pothin, R.; Ayral, R.; Berche, A.; Granier, D.; Rouessac, F.; Jund, P. Preparation and properties of znsb thermoelectric material through mechanical-alloying and spark plasma sintering. Chemical Engineering Journal 2016, 299, 126-134.
43. Son, J.-H.; Oh, M.-W.; Kim, B.-S.; Park, S.-D. Optimization of thermoelectric properties of n-type Bi2 (Te, Se)3 with optimizing ball milling time. Rare Metals 2018, 37, 351-359.
44. Zheng, Y.; Slade, T.J.; Hu, L.; Tan, X.Y.; Luo, Y.; Luo, Z.-Z.; Xu, J.; Yan, Q.; Kanatzidis, M.G. Defect engineering in thermoelectric materials: What have we learned? Chemical Society Reviews 2021, 50, 9022-9054.
45. Lóh, N.; Simão, L.; Faller, C.; De Noni Jr, A.; Montedo, O. A review of two-step sintering for ceramics. Ceramics International 2016, 42, 12556-12572.
46. Li, Z.; Xiao, C.; Xie, Y. Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Applied Physics Reviews 2022, 9, 011303.
47. Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 2020, 12, 742.
48. Theja, V.C.; Karthikeyan, V.; Assi, D.S.; Roy, V.A. Insights into the classification of nanoinclusions of composites for thermoelectric applications. ACS Applied Electronic Materials 2022, 4, 4781-4796.
49. Xiong, Q.; Han, G.; Wang, G.; Lu, X.; Zhou, X. The doping strategies for modulation of transport properties in thermoelectric materials. Advanced Functional Materials 2024, 34, 2411304.
50. Moshwan, R.; Shi, X.-L.; Liu, W.-D.; Liu, J.; Chen, Z.-G. Entropy engineering: An innovative strategy for designing high-performance thermoelectric materials and devices. Nano Today 2024, 58, 102475.
51. Zhao, C.; Li, Z.; Fan, T.; Xiao, C.; Xie, Y. Defects engineering with multiple dimensions in thermoelectric materials. Research 2020, 2020, 2639-5274.
52. Wu, C.; Shi, X.-L.; Wang, L.; Lyu, W.; Yuan, P.; Cheng, L.; Chen, Z.-G.; Yao, X. Defect engineering advances thermoelectric materials. ACS nano 2024, 18, 31660–31712.
53. Zhang, Y.; Tan, R.; Yang, Y.; Zhang, X.; Wang, W.; Cui, P.; Song, W. Two‐step sintering of pristine and aluminum‐doped zinc oxide ceramics. International Journal of Applied Ceramic Technology 2012, 9, 960-967.
54. Pan, Y.; Qiu, Y.; Witting, I.; Zhang, L.; Fu, C.; Li, J.-W.; Huang, Y.; Sun, F.-H.; He, J.; Snyder, G.J. Synergistic modulation of mobility and thermal conductivity in (Bi, Sb)2Te3 towards high thermoelectric performance. Energy & Environmental Science 2019, 12, 624-630.
55. Yen, H.-S.; Lin, J.-F.; Shi, S.-C.; Lin, H.-T.; Chiu, J.-C. Improvement of mid-temperature zt in a Bi-Se-Te via a two two-step sintering process. Materials Research Express 2024, 11, 026304.
56. Liu, Y.; Wang, W.; Yang, J.; Li, S. Recent advances of layered thermoelectric materials. Advanced Sustainable Systems 2018, 2, 1800046.
57. Samanta, M.; Ghosh, T.; Chandra, S.; Biswas, K. Layered materials with 2D connectivity for thermoelectric energy conversion. Journal of Materials Chemistry A 2020, 8, 12226-12261.
58. Zhan, B.; Liu, Y.; Lan, J.; Zeng, C.; Lin, Y.-H.; Nan, C.-W. Enhanced thermoelectric performance of Bi2O2Se with Ag addition. Materials 2015, 8, 1568-1576.
59. Zhang, B.-G.; Yang, H.; Tian, Z.; Wang, J. Effect of Ni doping on thermoelectric properties of Ag2Te-Cu2Te composite material. Journal of Alloys and Compounds 2021, 870, 159425.
60. Liang, B.; Song, Z.; Wang, M.; Wang, L.; Jiang, W. Fabrication and thermoelectric properties of Graphene/Bi2Te3 composite materials. Journal of Nanomaterials 2013, 2013, 210767.
61. Foster, S.; Neophytou, N. Effectiveness of nanoinclusions for reducing bipolar effects in thermoelectric materials. Computational Materials Science 2019, 164, 91-98.
62. Lim, K.H.; Wong, K.W.; Liu, Y.; Zhang, Y.; Cadavid, D.; Cabot, A.; Ng, K.M. Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material. Journal of Materials Chemistry C 2019, 7, 2646-2652.
63. Singh, N.K.; Bathula, S.; Gahtori, B.; Tyagi, K.; Haranath, D.; Dhar, A. The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material. Journal of Alloys and Compounds 2016, 668, 152-158.
64. Li, J.; Sui, J.; Pei, Y.; Meng, X.; Berardan, D.; Dragoe, N.; Cai, W.; Zhao, L.-D. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A 2014, 2, 4903-4906.
65. Jiang, B.; Yu, Y.; Chen, H.; Cui, J.; Liu, X.; Xie, L.; He, J. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nature communications 2021, 12, 3234.
66. Ghosh, S.; Raman, L.; Sridar, S.; Li, W. High-entropy engineering in thermoelectric materials: A review. Crystals 2024, 14, 432.
67. Liu, R.; Chen, H.; Zhao, K.; Qin, Y.; Jiang, B.; Zhang, T.; Sha, G.; Shi, X.; Uher, C.; Zhang, W. Entropy as a gene‐like performance indicator promoting thermoelectric materials. Advanced Materials 2017, 29, 1702712.
68. Wolf, M.; Hinterding, R.; Feldhoff, A. High Power Factor vs. High zT—a review of thermoelectric materials for high-temperature application. Entropy 2019, 21, 1058.
69. Dehkordi, A.M.; Zebarjadi, M.; He, J.; Tritt, T.M. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Materials Science and Engineering: R: Reports 2015, 97, 1-22.
70. Zhu, T.; Liu, Y.; Fu, C.; Heremans, J.P.; Snyder, J.G.; Zhao, X. Compromise and synergy in high‐efficiency thermoelectric materials. Advanced materials 2017, 29, 1605884.
71. Ma, Z.; Wei, J.; Song, P.; Zhang, M.; Yang, L.; Ma, J.; Liu, W.; Yang, F.; Wang, X. Review of experimental approaches for improving zt of thermoelectric materials. Materials Science in Semiconductor Processing 2021, 121, 105303.
72. Kahn, A. Fermi level, work function and vacuum level. Materials Horizons 2016, 3, 7-10.
73. Hughes, S.W. Archimedes revisited: A faster, better, cheaper method of accurately measuring the volume of small objects. Physics education 2005, 40, 468.
74. Santhosh, R.; Harish, S.; Abinaya, R.; Ponnusamy, S.; Ikeda, H.; Archana, J.; Navaneethan, M. Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects. CrystEngComm 2023, 25, 3317-3327.
75. Conn, J.; Taylor, R. Thermoelectric and crystallographic properties of Ag2Se. Journal of The Electrochemical Society 1960, 107, 977.
76. Simon, R.; Bourke, R.; Lougher, E. Preparation and thermoelectric properties of β-Ag2Se. Advanced Energy Conversion 1963, 3, 481-505.
77. Jin, M.; Liang, J.; Qiu, P.; Huang, H.; Yue, Z.; Zhou, L.; Li, R.; Chen, L.; Shi, X. Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method. The Journal of Physical Chemistry Letters 2021, 12, 8246-8255.
78. Ahmad, S.; Sarkar, P.; Bhatt, P.; Bhattacharya, S.; Navaneethan, M.; Basu, R.; Bhatt, R.; Bohra, A.; Debnath, A.; Muthe, K. Improved thermoelectric performance of Ag2–xAlxSe through formation of AgAl phase. Applied Physics Letters 2022, 121, 173905.
79. Wu, H.; Shi, X.-l.; Duan, J.; Liu, Q.; Chen, Z.-G. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy & Environmental Science 2023, 16, 1870-1906.
80. Li, G.; Blake, G.R.; Palstra, T.T. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chemical Society Reviews 2017, 46, 1693-1706.
81. Duan, H.; Li, Y.; Zhao, K.; Qiu, P.; Shi, X.; Chen, L. Ultra-fast synthesis for Ag2Se and cuagse thermoelectric materials. Jom 2016, 68, 2659-2665.
82. Yang, D.; Su, X.; Meng, F.; Wang, S.; Yan, Y.; Yang, J.; He, J.; Zhang, Q.; Uher, C.; Kanatzidis, M.G. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. Journal of Materials Chemistry A 2017, 5, 23243-23251.
83. Tarani, E.; Stathokostopoulos, D.; Karfaridis, D.; Malletzidou, L.; Sfampa, I.K.; Stergioudi, F.; Maliaris, G.; Michailidis, N.; Chrissafis, K.; Vourlias, G. Effect of ball milling time on the formation and thermal properties of Ag2Se and Cu2Se compounds. Journal of Thermal Analysis and Calorimetry 2023, 148, 13065-13081.
84. Billetter, H.; Ruschewitz, U. Structural phase transitions in Ag2Se (naumannite). Zeitschrift für anorganische und allgemeine Chemie 2008, 634, 241-246.
85. Sharma, N.; Alam, S.; Ray, B. Fundamentals of spark plasma sintering (sps): An ideal processing technique for fabrication of metal matrix nanocomposites. Spark plasma sintering of materials: advances in processing and applications 2019, 21-59.
86. Rahman, M.A. A review on semiconductors including applications and temperature effects in semiconductors. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 2014, 7, 50-70.
87. Yoon, S.; Kwon, O.-J.; Ahn, S.; Kim, J.-Y.; Koo, H.; Bae, S.-H.; Cho, J.-Y.; Kim, J.-S.; Park, C. The effect of grain size and density on the thermoelectric properties of Bi2Te3-PbTe compounds. Journal of electronic materials 2013, 42, 3390-3396.
88. Sun, Y.; Di, C.A.; Xu, W.; Zhu, D. Advances in n‐type organic thermoelectric materials and devices. Advanced Electronic Materials 2019, 5, 1800825.
89. Ijaz, U.; Siyar, M. The power of pores: Review on porous thermoelectric materials. RSC Sustainability 2024, 2, 852-870.
90. Matizamhuka, W.R. Fabrication of fine-grained functional ceramics by two-step sintering or spark plasma sintering (sps). In Design and manufacturing, IntechOpen: 2019; Vol. 16, pp 830-844.
91. Nagarjuna, C.; Dharmaiah, P.; Kim, K.B.; Hong, S.-J. Grain refinement to improve thermoelectric and mechanical performance in n-type Bi2Te2.7Se0.3 alloys. Materials Chemistry and Physics 2020, 256, 123699.
92. Wang, X.H.; Chen, P.L.; Chen, I.W. Two‐step sintering of ceramics with constant grain‐size, i. Y2O3. Journal of the American Ceramic society 2006, 89, 431-437.
93. Wunderlich, B.; Shu, H.-C. The crystallization and melting of selenium. Journal of Crystal Growth 1980, 48, 227-239.
校內:2030-08-17公開