| 研究生: |
沈士育 Shen, Shih-Yu |
|---|---|
| 論文名稱: |
Bi2Se3薄膜之磊晶結構與電性研究 Studies of epitaxial structure and electric property of Bi2Se3 thin films |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 硒化鉍 、拓樸絕緣體 |
| 外文關鍵詞: | Bi2Se3, Topological insulator |
| 相關次數: | 點閱:55 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用分子束磊晶系統(Molecular Beam Epitaxy)製備硒化鉍薄膜,研究成長溫度與基板對於硒化鉍薄膜磊晶結構與表面形貌之影響。實驗結果顯示,當硒化鉍薄膜以350度成長時具有最佳的晶向與表面結構,且其在不同基板上成長皆有良好的結晶性與表面平坦度。
此外,藉由不同厚度的硒化鉍薄膜電性量測,我們發現當薄膜厚度增加時,其電阻變小,而遷移率變大。且隨著厚度增加,其體載子濃度也隨之減少。我們推測傳輸性質的影響機制來自於硒空缺的多寡,藉由控制硒空缺的數量我們可以改變其電性,故有效的控制硒空缺為該系統未來的研究目標之一。
In the research, Bi2Se3 thin films were fabricated by molecular bean epitaxy. The structure and surface morphology of Bi2Se3 thin films grown with different growth temperature and substrate had been studied. The results show that the Bi2Se3 thin films have crystal orientation and surface structure with growth temperature to 350℃. The crystallization and flat surface had been observed when Bi2Se3 thin films were grown on different substrate.
In addition, the electrical properties of the Bi2Se3 thin films with different thickness had been studied. The results show that the resistance is reduced and mobility is improved with increase in Bi2Se3 thin films thickness. While, the volume carrier concentration decrease with increasing thickness. We speculate that the mechanism of electrical properties may be influenced the amount of Se vacancies. Therefore, the electrical properties of the Bi2Se3 thin films can be adjusted by controlling the amount of Se vacancies. Effective control of Se vacancies in the Bi2Se3 thin films is the goal in the future.
[1] Qi-Kun Xue et al., Phys. Today, 63, 33 (2010)
[2] Hasan M. Z. et al. Rev. Mod. Phys. 82, 3045 (2010)
[3] von Klitzing et al., Phys. Rev. Lett. 45, 494 (1980)
[4] J. E. Moore and L. Ba lents, Phys. Rev. B, 75, 121306 (2007)
[5] B. A. Bernevig et al., Science, 314, 1757 (2006)
[6] Konig M et al., Science, 318, 766 (2007)
[7] Fu L et al. Phys. Rev. Lett. 98, 106803 (2007)
[8] Hsieh D et al. Nature, 452, 970 (2008)
[9] H. Zhang et al., Nature Phys. 5, 438 (2009)
[10] Y. Xia et al., Nature Phys. 5 , 398 (2009)
[11] M. Zahid Hasan et al., Annu. Rev. Condens. Matter Phys. 55, 78 (2011)
[12] K. S. Novoselov et al., Science, 306, 666 (2004)
[13] K. S. Novoselov et al., Proc. Natl Acad. Sci. USA, 102, 10451 (2005)
[14] K. S. Novoselov et al., Nature, 438 , 197 (2005)
[15] W. Richter et al., Phys. Stat. Sol. (b), 84, 619 (1977)
[16] Qi-Kun Xue et al., Nature Phys. 10, 1038 (2010)
[17] Qi-Kun Xue et al., Applied phys. Let. 97, 194102 (2010)
[18] Soshin Chikazumi and Stanley H. Charap “Physics of Magnetism” (1972)
[19] P. K. Larsen and P. J. Dobson “Reflection High-Energy Electron Diffraction and Electron Imaging of Surfaces”, (NATO ASI Series B: Physics Vol. 188)
[20] 半導體元件物理與製作技術(第二版),施敏、黃調元,p.96-98 (2006)
[21] MIN-HAO LIU et al., World Scientific, 1, 21-25 (2011)
[22] Liang He et al., Nano Lett. 12, 1486-1490 (2012)
[23] J. G. Analytis et al., Phys. Rev. B, 81, 205407 (2010)
[24] Yong Seung Kim et al., Phys. Rev. B, 84, 073109 (2011)
[25] D. Kong et al., ACS Nano. 5, 4698 (2011)