| 研究生: |
陳昱紘 Chen, Yu-Hung |
|---|---|
| 論文名稱: |
以螞蟻演算法探勘推薦系統上之分類規則 Mining Classification Rules by ACO Algorithm in Recommender System |
| 指導教授: |
黃悅民
Huang, Yueh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 資料探勘 、螞蟻分類演算法 、協同式過濾 、推薦系統 |
| 外文關鍵詞: | Data Mining, Recommender System, Ant Classification Algorithm, Collaborative Filtering |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於資訊科技日益發達相對的資料量成指數成長,傳統的推薦系統架構會遇到資料的稀疏性與擴張性問題而導致無法做到迅速與準確的推薦;在此提出一個結合螞蟻分類演算法與推薦系統結合的架構,利用螞蟻分類演算法工具做為資料前處理的核心模組,找出推薦資料庫中使用者屬性與電影屬性間的關係,例如什麼樣的性別、工作、年齡喜歡哪一類的電影,再依據這些找出的規則把符合這些規則的推薦資料篩選出來做為推薦系統推薦時之參考依據,目的在於透過分類篩選出較有參考價值的資料以增加推薦的準確性,和降低的資料計算量以加快線上推薦的速度。
實驗將以一個電影推薦資料庫做為實驗資料來源,其中包含大約一百萬筆推薦資料,可視為一個 m×n的使用者對物品的推薦值矩陣,分別探討以推薦值為4或5為使用者感興趣物品、及推薦值為4或5且依年代分割的推薦值矩陣來做為分類工具的輸入資料,再利用 Data Mining的分類工具 Mining出一些能代表資料庫特徵的分類規則,依據這些規則從資料庫中擷取出符合這些規則的資料來提供推薦系統計算使用者或物品間的相似度並做出推薦;最後再以推薦系統評估工具針對五種不同的協同式過濾演算法對於未分類及分類後的資料進行推薦準確率與效能的比較。
Because of daily advancement of information technology and the exponential growth of data, traditional recommender system architecture can't do efficient and effective recommendation due to data matrix's sparsity and extension. And we propose a system architecture which combines Ant classification algorithm with recommender system and utilize Ant classification algorithm as data pre-processing module to find the relationship between users and movies in the recommendation database. For example, people belong to which gender, occupation, and age will like which genre of movie. System will collect these kinds of data from recommendation database and use these data as the input of recommendation for similarity and prediction computation. The goal of this system is to filter more valuable data for recommender and improve the accuracy and speed of online recommendation.
We will use a movie recommendation database as experiment data which contains about one million of rating records and can be seen as an m by n user-item rating matrix. We will divide the recommendation database into four kinds of data each have various limitation of rating and time value. Then we input these data into Ant classification tool for mining some useful rules and use the new rules to collect classified data from original recommendation database for correlation or similarity computation. Finally we will evaluate the correctness and speed of the new mining data and original one with five different Collaborative Filtering algorithms.
Agrawal, R., Imielinski, T., & Swami, A. (1993). "Mining association rules between sets of items in large databases." Proceedings of the 1993 ACM SIGMOD: 207 - 216.
Berry, M. J. A. and G. Linoff (2004). Data mining techniques :for marketing, sales, and customer relationship management.
Breese, J. S., D. Heckerman, et al. (1998). "Empirical Analysis of Predictive Algorithms for Collaborative Filtering." Appears in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.
Carpenter, G. A. and S. Grossberg (1987). "ART 2: self-organization of stable category recognition codes for analog input patterns." APPLIED OPTICS 26.
Cho, Y. B., Y. H. Cho, et al. (2005). "Mining changes in customer buying behavior for collaborative recommendations." Expert Systems with Applications 28: 359–369.
Claypool, M., A. Gokhale, et al. (1999). "Combining Content based and Collaborative Filters in an Online Newspaper." Proceedings of the ACM SIGIR '99 Workshop on Recommender Systems: Algorithms
and Evaluation University of California(Berkeley).
CNC, N. (2006). "NCKU HPC." from http://140.116.206.34/.
Dı′ez, J., J. J. d. Coz, et al. (2007). "Clustering people according to their preference criteria." Expert Systems with Applications.
Duda, R. O., P. E. Hart, et al. (2001). Pattern classification.
Fengrong, G., X. Chunxiao, et al. (2007). "Personalized Service System Based on Hybrid Filtering for Digital Library." TSINGHUA SCIENCE AND TECHNOLOGY 12(1): 1-8.
Geyer-Schulz, A. and M. Hahsler (2002). "Evaluation of Recommender Algorithms for an Internet Information Broker based on Simple Association Rules and on the Repeat-Buying Theory." Proceedings WEBKDD: 100-114.
Goldberg, K., T. Roeder, et al. (2000). "Eigentaste: A Constant Time Collaborative Filtering Algorithm." UCB Electronics Research Laboratory Technical Report M00: 41.
Herlocker, J. L. (2000). "Understanding and Improving Automated Collaborative Filtering Systems." Ph.D.Thesis Computer Science Dept.: University of Minnesota.
Honda, K. and H. Ichihashi (2004). "Component-wise robust linear fuzzy clustering for collaborative filtering." International Journal of Approximate Reasoning 37: 127-144.
Kim, D. and B.-J. Yum* (2005). "Collaborative filtering based on iterative principal component analysis." Expert Systems with Applications 28: 823–830.
Kohonen, T. (1990). " The self-organizing map." Proceedings of the IEEE 78(9): 1464-1480.
Lebanon, G. (2003). "C/Matlab Toolkit for Collaborative Filtering." from http://www.cs.cmu.edu/~lebanon/IR-lab.htm#tutorial.
Martı′n-Guerrero, J. D., P. J. G. Lisboa, et al. (2007). "An approach based on the Adaptive Resonance Theory for analysing the viability of recommender systems in a citizen Web portal." Expert Systems with Applications 33: 743-753.
Martı′n-Guerrero, J. D., A. Palomaresb, et al. (2006). "Studying the feasibility of a recommender in a citizen web portal based on user modeling and clustering algorithms." Expert Systems with Applications 30: 299-312.
Meyer, F. and R. S. Parpinelli. (2002). "GUI Ant-Miner." from http://sourceforge.net/projects/guiantminer/.
Mobasher, B., R. Cooley, et al. (2000). "Automatic personalization based on Web usage mining." Communications of the ACM 43(8): 142 - 151.
Paliouras, G., C. Papatheodorou, et al. (2002). "Discovering user communities on the Internet using unsupervised machine learning techniques." Interacting with Computers 14(761-791).
Parpinelli, R. S., H. S. Lopes, et al. (2002). "Data Mining With an Ant Colony Optimization Algorithm." IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING 6(4): 321-332.
Pazzani, M. J. (1999). "A Framework for Collaborative, Content-Based and Demographic Filtering." Artificial Intelligence Review.
Resnick, P., N. Iacovou, et al. (1994). "GroupLens: An Open Architecture for Collaborative Filtering of Netnews." Proceedings of the ACM Conference on Computer Supported Cooperative Work: 175-186.
Resnick, P. and H. R. Varian (1997). "Recommender systems." Communications of the ACM 40(3): 56-58.
Riedl, J. and J. Konstan. (2000). "GroupLens Research." from http://www.grouplens.org/.
Roh, T. H., K. J. Oh, et al. (2003). "The collaborative filtering recommendation based on SOM cluster-indexing CBR." Expert Systems with Applications 25: 413-423.
Sarwar, B., G. Karypis, et al. (2000). "Analysis of Recommendation Algorithms for ECommerce." Proceedings of the ACM EC'00 Conference Minneapolis, MN: 158-167.
Sarwar, B., G. Karypis, et al. (2001). "Item-based collaborative filtering recommendation algorithms." Proceedings of the Tenth International Conference on the World Wide Web WWW 10: 285-295.
Shardanand, U. and P. Maes (1995). "Social Information Filtering: Algorithms for Automating "World of Mouth"." Proceedings of the Conference on Human Factors in Computing Systems Denver, CO: 210-217.
Usama, M. F., P.-S. Gregory, et al. (1996). From data mining to knowledge discovery: an overview. Advances in knowledge discovery and data mining, American Association for Artificial Intelligence: 1-34.
Wang, Y.-F., Y.-L. Chuang, et al. (2004). "A personalized recommender system for the cosmetic business." Expert Systems with Applications 26: 427–434.
Weng, S.-S. and M.-J. Liu (2004). "Feature-based recommendations for one-to-one marketing." Expert Systems with Applications 26: 493-508.
張毓倫 (2003). 個人化顯隱性知識推薦方法之研究. 資 訊 管 理 研 究 所, 成功大學. 碩士班.
陳惠琪 (2006). 螞蟻分類技術之研究. 管理學院(資訊管理學程), 交通大學. 碩士班.
羅閔隆 (2004). 以經驗法則應用在關聯法則門檻值制定之研究. 資訊管理學系, 大葉大學. 碩士班.