| 研究生: |
林家榛 Lin, Chia-Chen |
|---|---|
| 論文名稱: |
利用蛋白質體學找尋血漿中肺癌生物標誌物 Identification of Potential Plasma Biomarkers for Lung Cancer by Proteomic Approaches |
| 指導教授: |
張權發
Chang, Chuan-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 肺癌 、生物標誌 、蛋白質體學 、機器學習方法 、富含半胱氨酸分泌蛋白3 |
| 外文關鍵詞: | Lung cancer, Biomarker, Proteomic, Machine learning, Cysteine Rich Secretory Protein 3 (CRISP3) |
| 相關次數: | 點閱:46 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是全球排行第二高盛行率的癌症,也是癌症致死的主要原因。然而,肺癌多半使用胸部X-光或者顯影技術、病理切片診斷,儘管臨床上已有肺癌相關的生物標記,但發展出有效的肺癌生物標誌物協助肺癌診斷仍至關重要,生物標誌物可用於癌症篩檢或早期檢測,最重要的是在高風險患者篩檢癌症。本研究的目的是通過蛋白質體學及機器學習方法分析肺癌的血漿生物標誌物。首先,使用六重串聯質量標籤 (TMT) 進行同質量異位標記,以對肺癌血漿蛋白質進行相對定量,並通過液相色譜-串聯質譜 (LC-MS/MS) 鑑定差異表達的蛋白質。最後找出富含半胱氨酸分泌蛋白 3 (Cysteine-rich secretory proteins 3)、胰島素樣生長因子結合蛋白 2 (Insulin-Like Growth Factor Binding Protein 2) 在肺癌患者血漿中有上調趨勢以及卡利他汀 (Kallistatin)、Semaphorin 3C (SEMA3C) 在肺癌患者血漿中有下降趨勢。接著,我們使用酵素免疫分析法作確認,發現在肺癌血漿中真實濃度,富含半胱氨酸分泌蛋白 3、胰島素樣生長因子結合蛋白2有上調趨勢以及卡利他汀 (Kallistatin)、Semaphorin 3C (SEMA3C)有下降趨勢。ROC曲線 (receiver operating characteristic curve) 分析中,我們發現富含半胱氨酸分泌蛋白 3 (Cysteine-rich secretory proteins 3)、胰島素樣生長因子結合蛋白 2 (Insulin-Like Growth Factor Binding Protein 2)以及卡利他汀 (Kallistatin)、Semaphorin 3C (SEMA3C),分辨肺癌病患的表現有良好的靈敏度與特異度。接下來,我們進一步使用支持向量機 (SVM) 機器學習方法來預測早期肺癌的生物標誌蛋白模型,利用富含半胱氨酸分泌蛋白 3、胰島素樣生長因子結合蛋白 2以及卡利他汀特徵建立機器學習模型。結果發現富含半胱氨酸分泌蛋白 3與卡利他汀在驗證模型中,同樣有良好的分辨能力。因此,根據本研究結果,我們認為富含半胱氨酸分泌蛋白 3 (Cysteine-rich secretory proteins 3)及卡利他汀 (Kallistatin) 是最有潛力的肺癌生物標誌蛋白,在未來也許能發展出有效的方法幫助肺癌的篩檢與診斷。
Lung cancer with the second high incidence rate in the world is mostly the main cause of death. Lung cancers are diagnosed by chest X-ray, imaging technology, or Pathology Examination. Although lung cancer-associated biomarkers have been reported, to development of novel and effective biomarkers is essential against cancer. Biomarkers can be applied for cancer screening or early detection which the focus is on detecting cancer in a high-risk patient population. The objective of this study is to identify plasma biomarkers for lung cancer by proteomic and machine learning approaches. We used a 6-plex Tandem Mass Tag (TMT) for isobaric labeling to relative quantification of human plasma proteins and identify differentially expressed proteins by liquid chromatography-tandem mass spectrometry (LC‑MS/MS). Finally, found that Cysteine Rich Secretory Protein 3 (CRISP3), Insulin-Like Growth Factor Binding Protein 2 (IGFBP2) were upregulated in lung cancer, and Kallistatin (KAL)、Semaphorin 3C (SEMA3C) were downregulated in lung cancer. Further verified by ELISA analysis, we found that the level of CRISP3, IGFBP2 was upregulated in lung cancer patients, and the level of KAL, SEMA3C was downregulated in lung cancer patients. ROC curve analysis showed the CRISP3, IGFBP2, KAL, SEMA3C with well diagnosis performance. Moreover, we further used a support vector machine (SVM) machine learning method to predict the cancer biomarker model of early-stage lung cancer. The cancer biomarkers of CRISP3, IGFBP2, and KAL to establish machine learning models based on the cancer biomarker features. The results found that CRISP3 and KAL with validation model obtained good diagnostic performance as well. Taken together, CRISP3 and KAL with better performance in detecting lung cancer can become useful biomarkers and have the potential to establish a useful test for early-stage lung cancer screening.
1. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2020. CA Cancer J Clin, 2020. 70(1): p. 7-30.
3. Lee, H.-Y.M.H.-Y., Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Archives of Pharmacal Research 2021. volume 44, pages146–164.
4. Tian, Y., et al., Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med, 2021. 10(1): p. 3-14.
5. Muscarella, L.A., et al., Neuroendocrine-Related Circulating Transcripts in Small-Cell Lung Cancers: Detection Methods and Future Perspectives. Cancers (Basel), 2021. 13(6).
6. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Translational Lung Cancer Research, 2016. 5(3): p. 288-300.
7. Malhotra, J., et al., Risk factors for lung cancer worldwide. Eur Respir J, 2016. 48(3): p. 889-902.
8. Sarah Dubin, M.D.G., DO, lung cancer in non-smokers. SCIenCe OF MeDICIne.
9. Turner, M.C., et al., Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American journal of respiratory and critical care medicine, 2011. 184(12): p. 1374-1381.
10. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol, 2010. 17(6): p. 1471-4.
11. Islam, K.M., et al., Comorbidity and Survival in Lung Cancer Patients. Cancer Epidemiol Biomarkers Prev, 2015. 24(7): p. 1079-85.
12. Scott, A. and R. Salgia, Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med, 2008. 2(6): p. 577-586.
13. Li Ma , X.-W.X., Hai-Yan Wang, Ling-Yun Ma, Zhong-Guang Wen, Clinical Evaluation of Tumor Markers for Diagnosis in Patients with Non-small Cell Lung Cancer in China. Asian Pac J Cancer Prev, 2015.
14. Lai, R.S., et al., CYFRA 21-1 enzyme-linked immunosorbent assay. Evaluation as a tumor marker in non-small cell lung cancer. Chest, 1996. 109(4): p. 995-1000.
15. Okamura, K., et al., Diagnostic value of CEA and CYFRA 21-1 tumor markers in primary lung cancer.
16. Henry, N.L. and D.F. Hayes, Cancer biomarkers. Mol Oncol, 2012. 6(2): p. 140-6.
17. Hala Fawzy Mohamed Kamel, a.H.S.B.A.-A., Cancer Biomarkers. August 17th 2016.
18. Tang, Y., et al., Biomarkers for early diagnosis, prognosis, prediction, and recurrence monitoring of non-small cell lung cancer. Onco Targets Ther, 2017. 10: p. 4527-4534.
19. Fang, R., et al., The Evaluation of Serum Biomarkers for Non-small Cell Lung Cancer (NSCLC) Diagnosis. Front Physiol, 2018. 9: p. 1710.
20. Lin Zhou, J.L., Feng Luo, <Serum tumor markers for detection of hepatocellular carcinoma.pdf>. 2006.
21. Gao, Y., et al., Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer. Sci Rep, 2018. 8(1): p. 2732.
22. Rustin, G.J.S., M.E.L. van der Burg, and J.S. Berek, Tumour markers. Annals of Oncology, 1993. 4: p. S71-S77.
23. Markovina, S., et al., Serum squamous cell carcinoma antigen as an early indicator of response during therapy of cervical cancer. Br J Cancer, 2018. 118(1): p. 72-78.
24. A. Pastor*, R.M., Ma.J. Cremades*, V. Pastor**, R. Llopis+, J. Aznar+, Diagnostic value of SCC, CEA and CYFRA 21.1 in lung cancer a Bayesian analysis. 1997.
25. Wang, C., et al., Secreted Pyruvate Kinase M2 Promotes Lung Cancer Metastasis through Activating the Integrin Beta1/FAK Signaling Pathway. Cell Rep, 2020. 30(6): p. 1780-1797 e6.
26. Aref, H. and S. Refaat, CRP evaluation in non-small cell lung cancer. Egyptian Journal of Chest Diseases and Tuberculosis, 2014. 63(3): p. 717-722.
27. Pefva Stiebev, M.D., * Ute Hasholzner, M.D.,* Heinz Bodenmuller, Ph.D.,t Dorothea Nagel, Ph.D.,* Ludger Sunder-Plassmann, M.D.,S Hendrik Dienemann, M.D.,$ Werner Meiev, M.D.,§ and Ahmad Fateh-Moghadam, M.D.*, CYFRA 21-1 A New Marker in Lung Cancer. 1993.
28. Zamay, T.N., et al., Current and Prospective Protein Biomarkers of Lung Cancer. Cancers (Basel), 2017. 9(11).
29. Kim, Y.J., et al., Verification of the biomarker candidates for non-small-cell lung cancer using a targeted proteomics approach. J Proteome Res, 2015. 14(3): p. 1412-9.
30. Chandramouli, K. and P.Y. Qian, Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics, 2009. 2009.
31. Matt, P., et al., Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics, 2008. 33(1): p. 12-7.
32. Ana M Gonzalez-Angulo1*, B.T.H., Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer. Clinical Proteomics, 2011.
33. Ileana M. Cristea, S.J.G., Proteomics techniques and their application to hematology. BLOOD, 2004.
34. Rifai, N., M.A. Gillette, and S.A. Carr, Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol, 2006. 24(8): p. 971-83.
35. Erdjument-Bromage, H., F.K. Huang, and T.A. Neubert, Sample Preparation for Relative Quantitation of Proteins Using Tandem Mass Tags (TMT) and Mass Spectrometry (MS). Methods Mol Biol, 2018. 1741: p. 135-149.
36. Rauniyar, N., et al., Comparison of protein expression ratios observed by sixplex and duplex TMT labeling method. J Proteome Res, 2013. 12(2): p. 1031-9.
37. Chahrour, O., D. Cobice, and J. Malone, Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal, 2015. 113: p. 2-20.
38. Xie, Y., et al., Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol, 2021. 14(1): p. 100907.
39. Bin Zhang, X.H., Fusheng Ouyang, Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Letters, 2017. Volume 403, Pages 21-27.
40. Huang, S., et al., Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics, 2018. 15(1): p. 41-51.
41. Vipin Dalal , J.C., Amaninder Dhaliwal , Maneesh Jain ,Sukhwinder Kaur , Surinder K. Batra, Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Letters, 2020.
42. Shuwen, H., et al., Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models. Cancer Medicine, 2020. 9(18): p. 6667-6678.
43. Yu, L., et al., Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis. BMC Cancer, 2019. 19(1): p. 464.
44. Ferreira Junior, J.R., et al., Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed, 2018. 159: p. 23-30.
45. Li, H., et al., A Comprehensive Proteome Analysis of Peripheral Blood Mononuclear Cells (PBMCs) to Identify Candidate Biomarkers of Pancreatic Cancer. Cancer Genomics Proteomics, 2019. 16(1): p. 81-89.
46. Pathak, B.R., et al., Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1. Mol Cell Biochem, 2016. 411(1-2): p. 11-21.
47. Chao, J., et al., Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. Oxid Med Cell Longev, 2017. 2017: p. 5025610.
48. Hao, J. and J.S. Yu, Semaphorin 3C and Its Receptors in Cancer and Cancer Stem-Like Cells. Biomedicines, 2018. 6(2).
49. Vamsidhar Velcheti, M., * and Ramaswamy Govindan, MD*†, Insulin-Like Growth Factor and Lung Cancer. 2006.
50. Del Ciello, A., et al., Missed lung cancer: when, where, and why? Diagn Interv Radiol, 2017. 23(2): p. 118-126.
51. Rachel M. Ostroff1, W.L.B., Wilbur Franklin3, Larry Gold1,4, Mike Mehan1, York E. Miller3,5, Harvey I. Pass6, William N. Rom7, Jill M. Siegfried8, Alex Stewart1, Jeffrey J. Walker1, Joel L. Weissfeld9, Stephen Williams1, Dom Zichi1, Edward N. Brody1, Unlocking biomarker discovery: Large scale application of aptamer proteomic technology for early detection of lung cancer.
52. Quint, L.E., et al., CT-guided thoracic core biopsies: value of a negative result. Cancer Imaging, 2006. 6: p. 163-7.
53. MAX R. CLEVERS, E.A.K., BAS J.M. PETERS, HANS KELDER and FRANZ M.N.H. SCHRAMEL, Evaluation of Serum Biomarker CEA and Ca-125 as Immunotherapy Response Predictors in Metastatic Non-small Cell Lung Cancer. Anticancer Research, 2021.
54. Chao, J., P. Li, and L. Chao, Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol, 2017. 113: p. 71-78.
55. H Kanety, Y.M., Y Dagan, J Levi, M Z Papa, C Pariente, B Goldwasser, A Karasik, Serum insulin-like growth factor-binding protein-2 (IGFBP-2) is increased and IGFBP-3 is decreased in patients with prostate cancer: correlation with serum prostate-specific antigen. The Journal of Clinical Endocrinology & Metabolism, Volume 77, Issue 1, 1 July 1993, Pages, 1993.
56. MEADOWS, J.G.H.a.G.G., Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. INTERNATIONAL JOURNAL OF ONCOLOGY, 2007.
57. Lee, T., T.Z.J. Teng, and V.G. Shelat, Carbohydrate antigen 19-9 - tumor marker: Past, present, and future. World J Gastrointest Surg, 2020. 12(12): p. 468-490.
58. Jelski, W. and B. Mroczko, Biochemical Markers of Colorectal Cancer - Present and Future. Cancer Manag Res, 2020. 12: p. 4789-4797.
59. Lakemeyer, L., et al., Diagnostic and Prognostic Value of CEA and CA19-9 in Colorectal Cancer. Diseases, 2021. 9(1).
60. Gibbs, G.M., K. Roelants, and M.K. O'Bryan, The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev, 2008. 29(7): p. 865-97.
61. Udby, L., et al., Characterization and localization of cysteine-rich secretory protein 3 (CRISP-3) in the human male reproductive tract. J Androl, 2005. 26(3): p. 333-42.
62. Yong Diao, J.M., Wei-Dong Xiao, Jia Luo, Xin-Yan Li, Kin-Wah Chu, Peter WC Fung, Nagy Habib, Farzin Farzaneh, Rui-An Xu, Inhibition of angiogenesis and HCT-116 xenograft tumorgrowth in mice by kallistatin. World Journal of Gastroenterology, 2007.
63. Swan, A.L., et al., Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS, 2013. 17(12): p. 595-610.
64. Farhad Kosari, G.V. and J.C.C. Yan W. Asmann, and, Cysteine-rich Secretory Protein-3A Potential Biomarker for Prostate Cancer. 2002.
65. Santosh, V., et al., Grade-specific expression of insulin-like growth factor-binding proteins-2, -3, and -5 in astrocytomas: IGFBP-3 emerges as a strong predictor of survival in patients with newly diagnosed glioblastoma. Cancer Epidemiol Biomarkers Prev, 2010. 19(6): p. 1399-408.
66. Colleen D. Hough, K.R.C., Alan B. Zonderman, Donald R. Schwartz, and Patrice J. Morin1, Coordinately Up-Regulated Genes in Ovarian Cancer. CANCER RESEARCH, 2001.
67. Lu, H., et al., IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells. Mol Cancer Ther, 2013. 12(12): p. 2864-73.
68. Hoon Hur1 and E.J.Y. , In-Hye Ham1,2, Hye-Jin Jin1,2, Dakeun Lee3, Preoperative serum levels of insulin-like growth factor-binding protein 2 predict prognosis of gastric cancer patients. Oncotarget, 2016.
69. Dong, W., et al., Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai), 2017. 49(1): p. 62-73.
70. Miyato, H., N.H. Tsuno, and J. Kitayama, Semaphorin 3C is involved in the progression of gastric cancer. Cancer Sci, 2012. 103(11): p. 1961-6.