簡易檢索 / 詳目顯示

研究生: 曾芷薇
Tsang, Zhi-Vui
論文名稱: 具有形狀重塑能力以及焦耳加熱行為的3D可列印之奈米碳管奈米複合材料
3D printable carbon nanotubes nanocomposite with shape reconfiguration ability and Joule heating behavior
指導教授: 游聲盛
Yu, Sheng-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 92
中文關鍵詞: 3D 列印奈米碳管聚乙烯醇聚乙烯吡咯烷酮深共熔溶劑形 狀重塑多材料結構焦耳加熱行為
外文關鍵詞: 3D printing, carbon nanotubes, polyvinyl alcohol, polyvinylpyrrolidone, deep eutectic solvent, shape reconfiguration, multi-material, Joule heating behavior
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高濃度奈米碳管(Carbon nanotubes, CNTs)的3D列印不容易達成,因為這面臨著各種挑戰。首先,CNTs 在化學上和物理上是非常穩定的,無法熔化和聚合。其次,CNTs 在大多數溶劑中往往會聚集,導致難以製備高含量的CNTs 配方。此外,添加流變改性劑或分散劑可能會降低整體的導電性。迄今為止,已有一些研究報導了製備 3D 可列印的高濃度 CNTs 的方法。然而,這些方法僅限於微米級結構的3D列印。
    在這項研究中,我們開發了一種環境友善且簡易的方法,利用直接書寫式(Direct ink writing, DIW)技術製備具有形狀重塑能力和焦耳加熱行為的CNTs 奈米複合材料。我們的可列印墨水由高濃度 CNTs 在聚乙烯醇(Polyvinyl alcohol, PVA)水溶液中分散而成,其中含有聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PVP)來協助 CNTs穩定分散在此系統中。墨水的流變性質通過CNTs和PVP的含量來調節。列印的物體經過冷凍-解凍(Freeze-thaw)過程形成水凝膠。該水凝膠的形成是由 PVA 的結晶所引起的。PVA 的物理交聯網絡作為支撐列印物體的聚合物支架,而CNTs嵌在聚合物網絡中。隨後,將奈米複合水凝膠浸泡在由氯化膽鹼和甘油所組成的深共熔溶劑(Deep eutectic solvent, DES)中。此步驟用DES取代水凝膠中的水。我們利用這奈米複合 DES 凝膠的優異機械性能,展示了其形狀重塑能力。這種能力使我們能夠實現一些很難單靠 DIW 來實現的更複雜幾何結構。最後,樣品在乙醇中進行溶劑交換,隨後進行乾燥,以固定其形狀並提高整體的 CNTs 含量。最終的產物在優化配方下,CNTs 含量超過 45 wt%,並具有 33.94 S/m的高電導率。此外,這奈米複合材料也表現出顯著的焦耳加熱表現。當其連接到 5 V電壓的 電路時,它可以在 4分鐘內達到 100 oC。
    另外,我們通過將樣品選擇性部分浸泡在乙醇中的方式成功製造了一個多材料結構。該複合材料在其不同部位具有不同的物理特性,例如機械、導電和焦耳加熱特性。這成功地示範了一種新穎的方式來製作可客制化的多樣性質的材料。

    The 3D printing of high-concentration carbon nanotubes (CNTs) presents various challenges. First, CNTs are chemically and physically stable, making them unable to be melted and polymerized. Second, CNTs tend to aggregate in most solvents, resulting in difficulty in formulating high-content CNTs. Additionally, adding rheological modifiers or dispersants can compromise the overall conductivity. To date, there are only a few studies that 3D print structures with high concentrations of CNTs. Moreover, these approaches are limited to 3D printing of micro-scale structures.
    In this work, we developed an ecofriendly, green, and efficient approach to fabricate CNTs nanocomposite with shape reconfiguration ability and Joule heating behavior, incorporating the direct ink writing (DIW) technique. Our 3D printable ink consisted of a high concentration of CNTs stabilized by polyvinylpyrrolidone (PVP) in an aqueous polyvinyl alcohol (PVA) solution. The rheology of the ink was tuned by the amounts of CNTs and PVP. The printed object underwent the freeze-thaw process to form hydrogel induced by the crystallization of PVA. The physically crosslinked network of PVA served as the polymer scaffold to support the printed object, with the CNTs embedded within the polymer network. Subsequently, the nanocomposite hydrogel was immersed in a deep eutectic solvent (DES) bath consisting of choline chloride and glycerol. This step replaced the water within the hydrogel with DES. We utilized the promising mechanical properties of the nanocomposite DES gel to demonstrate its shape reconfiguration ability. This capability allowed us to achieve more complex geometries that would be challenging to accomplish solely with DIW. Finally, the sample underwent solvent exchange with ethanol, followed by drying, to retain the shape and increase the CNTs content. The final object, formulated with an optimized recipe, contained CNTs at a concentration exceeding 40 wt% and demonstrated a high electrical conductivity of 33.94 S/m. Moreover, the nanocomposite exhibited remarkable Joule heating performance, that it could reach 100 oC in 4 mins when connected to the circuit with an applied voltage of 5 V.
    Additionally, we successfully fabricated a multi-material structure through selective immersion in an ethanol bath. The multi-material possessed distinct physical properties, such as mechanical, electrical conductivity, and Joule heating properties, in different parts of it. This achievement allowed us to 3D print structures with distinct properties.

    ABSTRACT I 摘要 III ACKNOWLEDGEMENTS V TABLE OF CONTENT VI LIST OF FIGURES IX LIST OF TABLES XV CHAPTER 1. Introduction 1 1.1 Three-dimensional (3D) printing techniques 1 1.1.1. Introduction of 3D printing 1 1.1.2. Vat photopolymerization 2 1.1.3. Material extrusion 3 1.1.4. 3D printing of multi-materials 5 1.2 Carbon Nanotubes (CNTs) 7 1.2.1 Introduction of CNTs 7 1.2.2 Properties of CNTs 8 1.2.3 Aggregations and functionalization of CNTs 10 1.3 3D printing of CNTs 13 1.3.1 Roles of CNTs in 3D printing 13 1.3.2 3D Printing of CNTs/polymer composites 13 1.3.3 3D printing of CNTs-based materials 16 1.4 Polyvinyl alcohol (PVA) 20 1.4.1 Introduction of PVA 20 1.4.2 PVA hydrogels 20 1.5 Deep Eutectic Solvents (DESs) 22 1.5.1 Introduction of DESs 22 1.5.2 Types of DESs 23 1.5.3 Properties of DESs 24 1.6 Objectives 27 CHAPTER 2. Experimental method 29 2.1 Materials 29 2.2 Preparation of the PVA/CNTs/PVP nanocomposites 29 2.3 Rheological test 30 2.4 Mechanical test 31 2.5 Shrinkage calculation 31 2.6 Electrical test 32 2.7 Joule heating performance 32 2.8 3D printing 33 2.9 Characterization 33 CHAPTER 3. Results and discussions 35 3.1 Dispersibility Test 35 3.2 Rheological behaviour of PVA/CNTs/PVP nanocomposite ink 38 3.3 Mechanical test 43 3.4 Differential scanning calorimetry (DSC) analysis 52 3.5 Dimensional Shrinkage 56 3.6 Scanning electron microscopy (SEM) analysis 62 3.7 Thermogravimetric (TGA) analysis 65 3.8 Electrical conductivity of PVA/CNTs/PVP nanocomposite 67 3.9 Joule heating behaviour 70 CHAPTER 4. 3D printing and application 74 4.1 3D printing and post-treatments 74 4.2 Shape reconfiguration test 77 4.3 Partial shape changing test 79 CHAPTER 5. Conclusion 83 REFERENCE 84

    1. Tolosa, I.; Garciandía, F.; Zubiri, F.; Zapirain, F.; Esnaola, A., Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. The International Journal of Advanced Manufacturing Technology 2010, 51 (5-8), 639-647.
    2. Hofmann, M., 3D printing gets a boost and opportunities with polymer materials. ACS Macro Letters 2014, 3 (4), 382-386.
    3. Zhou, L. Y.; Fu, J.; He, Y., A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials 2020, 30 (28), 2000187.
    4. Chen, Z.; Sun, X.; Shang, Y.; Xiong, K.; Xu, Z.; Guo, R.; Cai, S.; Zheng, C., Dense ceramics with complex shape fabricated by 3D printing: A review. Journal of Advanced Ceramics 2021, 10 (2), 195-218.
    5. Patel, D. K.; Sakhaei, A. H.; Layani, M.; Zhang, B.; Ge, Q.; Magdassi, S., Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Advanced Materials 2017, 29 (15), 1606000.
    6. Yeh, Y. C.; Highley, C. B.; Ouyang, L.; Burdick, J. A., 3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication 2016, 8 (4), 045004.
    7. Sirrine, J. M.; Zlatanic, A.; Meenakshisundaram, V.; Messman, J. M.; Williams, C. B.; Dvornic, P. R.; Long, T. E., 3D printing amorphous polysiloxane terpolymers via vat photopolymerization. Macromolecular Chemistry and Physics 2019, 220 (4), 1800425.
    8. Sirrine, J. M.; Meenakshisundaram, V.; Moon, N. G.; Scott, P. J.; Mondschein, R. J.; Weiseman, T. F.; Williams, C. B.; Long, T. E., Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing. Polymer 2018, 152, 25-34.
    9. Xing, J. F.; Zheng, M. L.; Duan, X. M., Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 2015, 44 (15), 5031-5039.
    10. Yin, M. J.; Yao, M.; Gao, S.; Zhang, A. P.; Tam, H. Y.; Wai, P. K., Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Advanced Materials 2016, 28 (7), 1394-1399
    11. Shaukat, U.; Rossegger, E.; Schlogl, S., A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers 2022, 14 (12), 2449.
    12. Hassan, I.; Selvaganapathy, P. R., Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials. Advanced Materials Technologies 2022, 7 (9), 2101709.
    13. Frutiger, A.; Muth, J. T.; Vogt, D. M.; Menguc, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A., Capacitive soft strain sensors via multicore-shell fiber printing. Advanced Materials 2015, 27 (15), 2440-2446.
    14. Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part a-Applied Science and Manufacturing 2010, 41 (10), 1345-1367.
    15. Coleman, J. N.; Khan, U.; Gun'ko, Y. K., Mechanical reinforcement of polymers using carbon nanotubes. Advanced Materials 2006, 18 (6), 689-706.
    16. Abdulhameed, A.; Wahab, N. Z. A.; Mohtar, M. N.; Hamidon, M. N.; Shafie, S.; Halin, I. A., Methods and applications of electrical conductivity enhancement of materials using carbon nanotubes. Journal of Electronic Materials 2021, 50 (6), 3207-3221.
    17. Cao, Q.; Yu, Q.; Connell, D. W.; Yu, G., Titania/carbon nanotube composite
    (TiO2/CNT) and its application for removal of organic pollutants. Clean Technologies and Environmental Policy 2013, 15 (6), 871-880.
    18. Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S. J.; Lee, W. R., A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry 2015, 21, 11-25.
    19. Ahmadi, M.; Zabihi, O.; Masoomi, M.; Naebe, M., Synergistic effect of MWCNTs functionalization on interfacial and mechanical properties of multi-scale UHMWPE fibre reinforced epoxy composites. Composites Science and Technology 2016, 134, 1-11.
    20. Mohd Nurazzi, N.; Asyraf, M. R. M.; Khalina, A.; Abdullah, N.; Sabaruddin, F. A.; Kamarudin, S. H.; Ahmad, S.; Mahat, A. M.; Lee, C. L.; Aisyah, H. A.;Norrrahim, M. N. F.; Ilyas, R. A.; Harussani, M. M.; Ishak, M. R.; Sapuan, S. M., Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview. Polymers 2021, 13 (7), 1047.
    21. Kim, S. W.; Kim, T.; Kim, Y. S.; Choi, H. S.; Lim, H. J.; Yang, S. J.; Park, C. R., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 2012, 50 (1), 3-33.
    22. Hirsch, A., Functionalization of single-walled carbon nanotubes. Angewandte Chemie International Edition 2002, 41 (11), 1853-1859.
    23. Hasan, T.; Scardaci, S.; Tan, P. H.; Rozhin, A. G.; Milne, W. I.; Ferrari, A.
    C., Stabilization and “debundling” of single-wall carbon nanotube dispersions in NMethyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). The Journal of Physical Chemistry C 2007, 111 (34), 12594-12602.
    24. Namasivayam, M.; Andersson, M. R.; Shapter, J. G., A Comparative Study on the Role of Polyvinylpyrrolidone Molecular Weight on the Functionalization of Various Carbon Nanotubes and Their Composites. Polymers (Basel) 2021, 13 (15), 2447.
    25. Saint-Aubin, K.; Poulin, P.; Saadaoui, H.; Maugey, M.; Zakri, C., Dispersion
    and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Langmuir 2009, 25 (22), 13206-13211.
    26. Liu, W.; Yang, C.-L.; Zhu, Y.-T.; Wang, M.-s., Interactions between single-walled carbon nanotubes and polyethylene/polypropylene/polystyrene/poly(phenylacetylene)/poly(pphenylenevinylene) considering repeat unit arrangements and conformations: A molecular dynamics simulation study. The Journal of Physical Chemistry C 2008, 112 (6), 1803-1811.
    27. Ge, G.; Yuan, W.; Zhao, W.; Lu, Y.; Zhang, Y. Z.; Wang, W. J.; Chen, P.; Huang, W.; Si, W. L.; Dong, X. C., Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. Journal of Materials Chemistry A 2019, 7 (11), 5949-5956.
    28. Sun, X.; Qin, Z. H.; Ye, L.; Zhang, H. T.; Yu, Q. Y.; Wu, X. J.; Li, J. J.; Yao, F. L., Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chemical Engineering Journal 2020, 382, 122832.
    29. Ahmed, K.; Kawakami, M.; Khosla, A.; Furukawa, H., Soft, conductive nanocomposites based on ionic liquids/carbon nanotubes for 3D printing of flexible electronic devices. Polymer Journal 2019, 51 (5), 511-521.
    30. Luo, B.; Wei, Y.; Chen, H.; Zhu, Z.; Fan, P.; Xu, X.; Xie, B., Printing carbon nanotube-embedded silicone elastomers via direct writing. ACS Applied Material Interfaces 2018, 10 (51), 44796-44802.
    31. Cortés, A.; Cosola, A.; Sangermano, M.; Campo, M.; González Prolongo, S.; Pirri, C. F.; Jiménez‐Suárez, A.; Chiappone, A., DLP 4D‐printing of remotely, modularly, and selectively controllable shape memory polymer nanocomposites embedding carbon nanotubes. Advanced Functional Materials 2021, 31 (50), 2106774.
    32. Dul, S.; Gutierrez, B. J. A.; Pegoretti, A.; Alvarez-Quintana, J.; Fambri, L.,
    3D printing of ABS nanocomposites. Comparison of processing and effects of multiwall and single-wall carbon nanotubes on thermal, mechanical and electrical properties. Journal of Materials Science & Technology 2022, 121, 52-66.
    33. Kamyshny, A.; Magdassi, S., Conductive nanomaterials for 2D and 3D printed flexible electronics. Chemical Society Reviews 2019, 48 (6), 1712-1740.
    34. Azoubel, S.; Magdassi, S., Controlling adhesion properties of SWCNT–PET films prepared by wet deposition. ACS Applied Materials & Interfaces 2014, 6 (12), 9265-9271.
    35. Chen, H.; Lv, L.; Zhang, J.; Zhang, S.; Xu, P.; Li, C.; Zhang, Z.; Li, Y.; Xu, Y.; Wang, J., Enhanced stretchable and sensitive strain sensor via controlled strain distribution. Nanomaterials 2020, 10 (2), 218.
    36. Kim, J. H.; Lee, S.; Wajahat, M.; Jeong, H.; Chang, W. S.; Jeong, H. J.; Yang, J. R.; Kim, J. T.; Seol, S. K., Three-dimensional printing of highly conductive carbon nanotube microarchitectures with fluid ink. ACS Nano 2016, 10 (9), 88798887.
    37. Yu, W.; Zhou, H.; Li, B. Q.; Ding, S., 3D printing of carbon nanotubes-based microsupercapacitors. ACS Applied Material Interfaces 2017, 9 (5), 4597-4604.
    38. Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T., Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal 2022, 164, 110974.
    39. Karimzadeh, Z.; Mahmoudpour, M.; Rahimpour, E.; Jouyban, A., Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes. Advances in Colloid and Interface Science 2022, 305, 102705.
    40. Liu, Y.; Geever, L. M.; Kennedy, J. E.; Higginbotham, C. L.; Cahill, P. A.; McGuinness, G. B., Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. Journal of the Mechanical Behavior of Biomedical Materials 2010, 3 (2), 203-209.
    41. Bi, S.; Wang, P.; Hu, S.; Li, S.; Pang, J.; Zhou, Z.; Sun, G.; Huang, L.; Cheng, X.; Xing, S.; Chen, X., Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate Polymers 2019, 224, 115176.
    42. Peppas, N. A., Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Die Makromolekulare Chemie 1975, 176 (11), 3433-3440.
    43. Kim, T. H.; An, D. B.; Oh, S. H.; Kang, M. K.; Song, H. H.; Lee, J. H., Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors. Biomaterials 2015, 40, 51-60.
    44. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R., Deep eutectic solvents: A review of fundamentals and applications. Chemical Reviews 2021, 121 (3), 1232-1285.
    45. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060-11082.
    46. Jablonsky, M.; Skulcova, A.; Sima, J., Use of deep eutectic solvents in polymer chemistry-A review. Molecules 2019, 24 (21), 3978.
    47. Nahar, Y.; Thickett, S. C., Greener, faster, stronger: The benefits of deep eutectic solvents in polymer and materials science. Polymers 2021, 13 (3), 447.
    48. Francisco, M.; van den Bruinhorst, A.; Kroon, M. C., Low-transition temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed Engl 2013, 52 (11), 3074-3085.
    49. Ke, K.; Wang, Y.; Liu, X.-Q.; Cao, J.; Luo, Y.; Yang, W.; Xie, B.-H.; Yang, M.-B., A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene fluoride) matrix. Composites Part B: Engineering 2012, 43 (3), 1425-1432.
    50. Cha, J.; Jin, S.; Shim, J. H.; Park, C. S.; Ryu, H. J.; Hong, S. H., Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Materials & Design 2016, 95, 1-8.
    51. Gomaa, M. M.; Hugenschmidt, C.; Dickmann, M.; Abdel-Hady, E. E.; Mohamed, H. F. M.; Abdel-Hamed, M. O., Crosslinked PVA/SSA proton exchange membranes: correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Physical Chemistry Chemical Physics 2018, 20 (44), 28287-28299.
    52. Gallastegui, A.; Dominguez-Alfaro, A.; Lezama, L.; Alegret, N.; Prato, M.; Gomez, M. L.; Mecerreyes, D., Fast visible-light photopolymerization in the presence of multiwalled carbon nanotubes: Toward 3D printing conducting nanocomposites. ACS Macro Letters 2022, 11 (3), 303-309.

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE