| 研究生: |
徐書鴻 Hsu, Shu-Hung |
|---|---|
| 論文名稱: |
海面降雨水下環境噪音頻率特性 Frequency characteristics of underwater ambient noises caused by rainfalls |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 水下降雨噪音 、水聽器量測 、資料浮標 |
| 外文關鍵詞: | Underwater rainfall noise, Hydrophone measurement, Data buoy |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前全台的雨量測站,皆是在陸域上,並無任何是位於海洋中。然而,海洋降雨是一項重要但又不易量測的環境參數,考慮到環境條件與陸地截然不同,儀器容易故障,而且也不易保養和維修。因此,發展出利用水中聲學的方式,透過聲學儀器在水下量測因雨滴所產生的噪音,進而推估出海上的降雨情況。本研究於南灣資料浮標 (Data Bouy) 下方水深約1 ~ 2公尺處掛載水聽器 (Hydrophone),水下噪音的量測採用每60分鐘量測3分鐘的方式進行,取樣頻率為32 kHz。若是遇到颱風侵台期間,或是有出現暴雨的可能性,可以將工作週期縮短成每10分鐘,獲取更多的原始數據。量測到的原始數據以快速傅立葉轉換法 (FFT) 對於取樣訊號進行頻譜分析,以獲得水下噪音頻譜,利用第三代行動通訊技術即時回傳至陸地端。降雨資料選用海棠颱風侵台期間所帶來的豐沛雨量,在進行降雨量分析之前,需要了解平常日未下雨時的環境噪音特性,再將降雨資料進行比對,才具有其物理意義。環境噪音頻域訊號在頻率1 kHz以下的聲壓位準是與風速成正相關,說明了風速大小對於頻譜的影響。將降雨期間的頻域訊號對照相同風速區間的環境噪音,在頻率2 ~ 10 kHz的聲壓位準都有上升趨勢,其中以頻率2 ~ 6 kHz最為明顯,在低頻的部分,風浪的影響較顯著,不過當降雨強度過大時,聲壓位準會於全頻段皆抬升。未來若資料量足夠,除了可以由回傳的頻譜即時判斷當地降雨情形,也可以進行量化的計算,推估當地降雨量的經驗公式。
In this study, the noise generated by raindrops under water was measured using acoustic instruments in order to estimate the rainfall at sea. The hydrophone was mounted at a depth of approximately 2 meters below the data buoy in Nanwan; measurement of underwater noise was performed for three minutes every hour at a sampling frequency of 32 kHz. The measured raw data were subjected to spectrum analysis using the Fast Fourier Transform method for the sampled signals to obtain the underwater noise spectrum, and were immediately transmitted back to land by wireless communication. Rainfall data were selected from the abundant rainfall during the invasion by typhoon Haitang in Taiwan in 2017. Analysis of ambient noise in absence of rain for subtraction purposes indicated that the ambient noise frequency signal at a frequency less than 1 kHz was positively correlated with the wind speed. Comparing the frequency domain signal during rainfall with the ambient noise in the same wind speed range, there was an upward trend in the sound pressure level from 2 to 6 kHz. In the future, sufficient data may allow estimation of an empirical formula for the local rainfall
1. Carey, W. M. and Evans R. B., Ocean ambient noise: measurement and theory: Springer Science & Business Media, 2011.
2. Cooley, J. W. and Tukey J. W., "An algorithm for the machine calculation of complex Fourier series," Mathematics of computation, vol. 19, pp. 297-301, 1965.
3. Franz, G., "Splashes as sources of sound in liquids," The Journal of the Acoustical Society of America, vol. 31, pp. 1080-1096, 1959.
4. Knudsen, V. O., Alford R., and Emling J., "Underwater ambient noise," J. Mar. Res., vol. 7, pp. 410-429, 1948.
5. Ma, B. B. and Nystuen J. A., "Passive acoustic detection and measurement of rainfall at sea," Journal of Atmospheric and Oceanic Technology, vol. 22, pp. 1225-1248, 2005.
6. Ma, B. B., Nystuen J. A., and Lien R.-C., "Prediction of underwater sound levels from rain and wind," The Journal of the Acoustical Society of America, vol. 117, pp. 3555-3565, 2005.
7. Marrett, R. and Chapman N. R., "Low-frequency ambient-noise measurements in the South Fiji basin," IEEE Journal of Oceanic Engineering, vol. 15, pp. 311-315, 1990.
8. Medwin, H., Nystuen J. A., Jacobus P. W., Ostwald L. H., and Snyder D. E., "The anatomy of underwater rain noise," The Journal of the Acoustical Society of America, vol. 92, pp. 1613-1623, 1992.
9. Minnaert, M., "XVI. On musical air-bubbles and the sounds of running water," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 16, pp. 235-248, 1933.
10. Nystuen, J. A., "Rainfall measurements using underwater ambient noise," The Journal of the Acoustical Society of America, vol. 79, pp. 972-982, 1986.
11. Nystuen, J. A., "Acoustical rainfall analysis: Rainfall drop size distribution using the underwater sound field," Journal of Atmospheric and oceanic technology, vol. 13, pp. 74-84, 1996.
12. Nystuen, J. A. and Farmer D. M., "The influence of wind on the underwater sound generated by light rain," The Journal of the Acoustical Society of America, vol. 82, pp. 270-274, 1987.
13. Nystuen, J. A., McGlothin C. C., and Cook M. S., "The underwater sound generated by heavy rainfall," The Journal of the Acoustical Society of America, vol. 93, pp. 3169-3177, 1993.
14. Piggott, C., "Ambient sea noise at low frequencies in shallow water of the Scotian Shelf," The Journal of the Acoustical Society of America, vol. 36, pp. 2152-2163, 1964.
15. Pumphrey, H. C., Crum L., and Bjørnø, L., "Underwater sound produced by individual drop impacts and rainfall," The Journal of the Acoustical Society of America, vol. 85, pp. 1518-1526, 1989.
16. Scrimger, J. A., Evans D. J., and Yee W., "Underwater noise due to rain—Open ocean measurements," The Journal of the Acoustical Society of America, vol. 85, pp. 726-731, 1989.
17. Urick, R. and Pryce A., "A summary of underwater acoustic data—Part V," Background noise. Office of Naval Research.(Confidential), 1954.
18. Urick, R. J., Ambient noise in the sea: Peninsula Pub, 1986.
19. Wenz, G. M., "Acoustic ambient noise in the ocean: spectra and sources," The Journal of the Acoustical Society of America, vol. 34, pp. 1936-1956, 1962.
20. 杜沛倫, "夏季同時段臺灣東南與東北海域環境噪音之分析與比較," 中山大學海下科技暨應用海洋物理研究所學位論文, pp. 1-92, 2013.
21. 劉金源, 水中聲學: 水聲系統之基本操作原理: 國立編譯館出版, 2001.
22. 魏瑞昌, 湛翔智, and 劉志昇, "南海低頻環境噪音之分析," 2001.
23. 交通部中央氣象局 https://www.cwb.gov.tw。
校內:2021-07-01公開