| 研究生: |
謝欣甫 Hsieh, Hsin-Fu |
|---|---|
| 論文名稱: |
奈米壓痕實驗應用於鑽石薄膜突離現象之研究—理論建模與實驗印證 A Theoretical Model and Experiments for the Pop-out Phenomena via Nanoindentation Tests of Diamond Films |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 奈米壓痕實驗 、pop-out 、相變化 |
| 外文關鍵詞: | nanoindentation, pop-out, phase transformation |
| 相關次數: | 點閱:148 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對奈米壓痕實驗應用於鑽石薄膜的突離(pop-out)現象進行研究,研究內容主要分成兩個部份:第一個部份為利用拉曼光譜分析受奈米壓痕實驗作用的鑽石薄膜,分析結果為鑽石薄膜 鍵結的比例上升,意謂著鑽石薄膜發生相變化(phase transformation),部份的鑽石結晶相轉變為石墨結晶相;利用穿透式電子顯微鏡的選區繞射分析受奈米壓痕實驗作用的鑽石薄膜,分析結果為鑽石薄膜隨著奈米壓痕實驗的最大負載力愈大,石墨結晶相愈多,代表鑽石薄膜有相變化的情形發生。
第二個部份為建立一個奈米壓痕實驗的卸載過程中,壓頭與鑽石薄膜接觸行為的理論模型,並推導出一個薄膜內應力與接觸力、接觸壓深的關係式,藉由此關係式計算出鑽石薄膜發生pop-out的臨界應力值,此數值與cubic diamond相轉變為graphite相之臨界應力值相當接近,並搭配第一個部分實驗分析的結果,鑽石薄膜會因為奈米壓痕實驗施加的壓力而發生相變化,印證本研究理論模型所推估的pop-out現象臨界應力值即為鑽石薄膜發生相變化的臨界應力值,而鑽石薄膜發生相變化就是pop-out現象的原因。
The topical subject in this paper is to investigate pop-out phenomena via nanoindentation tests of diamond films. In the part of experimental analysis, the ratio of bonding of diamond films are increased by the Raman spectrum, means that nanoindentation induces the phase transformation phenomena of diamond films, some of diamond crystal phase into graphite crystal phase. Another experimental analysis is selected area diffraction(SAD), the amount of graphite crystal phase increase with the larger maximum load of nanoindentation, means that nanoindentation induces the phase transformation phenomena of diamond films.
In the part of the theoretical model of the unloading process via nanoindentation, based on the contact behavior of indenter and diamond films. These two contact parameters allow the evaluation of internal stress and strain during the unloading process. We can estimate the critical internal stress of pop-out phenomena, and it is equivalent to the critical stress of phase transformation of cubic diamond phase into graphite phase. By the experimental analysis and the critical internal stress, it shows that the theoretical model and the equation of critical internal stress are reasonable. The phenomena of phase transformation causes the pop-out phenomena of diamond films.
[1]K. L. Johnson, Contact mechanics, Cambridge University Press, 1985.
[2]H. Hertz, Miscellaneous Papers, London, Macmillan, 1896.
[3]W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Material Research, 7(4), 1564-1583, 1992.
[4]W. C. Oliver and G. M. Pharr, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in nderstanding and Refinements to Methodology,” Journal of Material Research, 19, 3-20, 2004.
[5]J. C. M. Li, S. N. G. Chu, “Impression Fatigue,” Scr. Metall., 13(11), 1021-1026, 1979.
[6]D. B. Marchall and J. F. Evans, “Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination,” J Appl Phys, 56, 2632, 1984.
[7]S. Suresh, A. E. Giannakopoulos, “Determination of Elastoplastic Properties by Sharp Indentation,” Scripta Materialia, 40(10), 1191-1198, 1999.
[8]A. Nayebi, R. El Abdi, O. Bartier, G. Mauvoisin, “New procedure to determine steel mechanical parameters from the spherical indentation technique,” Mechanics of Materials, 34, 243-254, 2002.
[9]S. Jayaraman, G. T. Hahn, W. C. Oliver, C. A. Rubin, P. C. Bastias, “Determination of Monotonic Stress-Strain Curve of Hard Materials from Ultra-Low-Load Indentation Tests,” Int. J. Solids Structures, 35(5), 365-381, 1998.
[10]B. Taljat, T. Zacharia, F. Kosel, “New Analytical Procedure to Determine StressStrain Curve from Spherical Indentation Data,” International Journal of Solids Structures, 35(33), 4411-4426, 1998.
[11]魏伯任, “奈米壓痕實驗運用於塊材、覆膜材料機械性質以及硬脆材料黏彈性質量測—理論分析與實驗印證,” 國立成功大學, 博士論文, 2005.
[12]M. Williams, B. Griffin, B. Homeijer, B. Sankar and M. Sheplak, IEEE SENSORS Conference, 349, 2007.
[13]J. Yan, X. Chen and A. M. Karlsson, “Determining Equi-Biaxial Residual Stress and Mechanical Properties from the Force-Displacement Curves of Conical Micro-indentation,” J Eng Mater Tech, 129, 200, 2007.
[14]P. J. Wei, W. L. Liang, C. F. Ai and J. F. Lin, “A new method for determining the strain energy release rate of an interface via force–depth data of nanoindentation tests,” Nanotechnology, 20, 7, 2008.
[15]C. F. Han, B. H. Wu, C. Y. Huang, and J. F. Lin, “Determination of the Strain Energy Release Rate for C/a-Si Composite Film Produced in Nanoindentation Tests,” Journal of Applied Physics in press, 105, 2008.
[16]C. F. Han, C. Y. Huang, B. H. Wu, and J. F. Lin, “The Nanoindentation Model Developed and Applied to Evaluate the Reduced Modulus and Hardness for Polymeric Materials,” Sensors and Actuators A-Physical in revision, 106, 2008.
[17]I. N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Engng Sci., 3, 47-57, 1965.
[18]R. B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure, 23(12), 1657-1664, 1987.
[19]P. K. Aw, A. W. Batchelor and N. L. Loh, “Structure and tribological properties of plasma nitrided surface films on Inconel 718,” Surface and Coatings Technology, Vol. 89, pp.70-76, 1997.
[20]S. V. Hainsworth, H. W. Chandler, T. F. Page, “Analysis of nano -indentation load-displacement loading curves,” J. Mat. Res., 11(8), 1987-1995, 1996.
[21]T. F. Page, G. M. Pharr, J. C. Hay, W. C. Oliver, B. N. Lucas, E. Herbert, L. Riester, “Nanoindentation Characterization of Coated Systems: P/S2 - A New Approach Using the Continuous Stiffness Technique,” MRS Symp. Proc., 522, 53-64, 1998.
[22]A. C. Fischer-Cripps, Nanoindentation, Springer, 2002.
[23]Bernhard Schrader, Infrared and Raman Spectroscopy, p.19, 1995.
[24]汪建民主編, “材料分析,” 中國材料科學學會, 民87年10月.
[25]A. Beiser, Concepts of Modern Physics, ed., McGraw-Hill, 1995.
[26]H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: properties, processing and application, Noyes Publications, New Jersey, 1993.
[27]W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, Canada, 1991.
[28]K. Farhang, L. E. Seitzman, B. Feng, “A Two-Parameter Function for Nanoscale Indentation Measurement of Near Surface Properties,” Journal of Tribology, Vol. 130, 011005, 2008.
[29]X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, Vol. 48, pp.11-36, 2002.
[30]F. M. Borodich, L. M. Keer and C. S. Korach, “Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes,” Nanotechnology, Vol. 14, pp.803-808, 2003.
[31]“Nano Indenter XP user’s manual,MTS,” 2001.
[32]F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys., Vol. 53 [3], p.1126-1130, 1970.
[33]B. Bhushan, B. K. Koinkar and M. H. Azarian, “Nanoindentation, Microscratch, Friction and Wear Studies of Coating for Contact Recording Applications,” Wear, Vol. 183, pp.743-758, 1995.
[34]M. K. Fung, W. C. Chan, Z. Q. Gao, I. Bello, C. S. Lee and S. T. Lee, “Effect of Nitrogen Incorporation into Diamond-Like Carbon Films by ECR-CVD,” Diamond and Related Materials, Vol. 8, pp.472~476, 1999.
[35]J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S. R. P. Silva, “Raman spectroscopy on amorphous carbon films,” J. Appl. Phys., Vol. 80[1], p.440, 1996.
[36]S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, R. Kalish, “ Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition,” Diamond and Related Materials 5, 433, 1996.
[37]A. Grill, “Amorphous carbon based materials as the interconnect dielectric in ULSI chips,” Diamond and Related Materials 10, 234, 2001.
[38]D. W. Han, S. M. Jeong, H. K. Baik, S. J. Lee, N. C. Yang, D. H. Suh, “Electron injection enhancement by diamond-like carbon film in organic electroluminescence devices,” Thin Solid Films 420, 190, 2002.
[39]許汶仰, “奈米壓痕用於覆膜材料硬度過渡行為的評估與理論建立,” 國立成功大學, 碩士論文, 2008.
[40]楊雲凱, “低溫離子束沈積含氮類鑽碳薄膜之附著功理論建立及微-奈米磨潤性能之研究,” 國立成功大學, 碩士論文, 2002.
[41]國立成功大學儀器設備中心網頁, http://www.ncku.edu.tw/~facility/
[42]Soshin Chikazumi and Stanley H. Charap, ”Physics of Magnetism”, 1972.
[43]許樹恩, 吳泰伯,“X光繞射原理與材料結構分析”, 行政院國家科學委員會精密儀器發展中心, 民國82年.
[44]E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys., 86, 6078, 1999.
[45]Steven Prawer, Robert J. Nemanich, “Raman spectroscopy of diamond and doped diamond,” Phil. Trans. R. Soc. Lond. A, Vol. 362, pp. 2537-2565, 2004.
[46]Murat Durandurdu, D. A. Drabold, “High-pressure phases of amorphous and crystalline silicon,” Phys. Rev. B, 67, 212101, 2003.
[47]B. R. Wu and Ji-an Xu, “Total energy calculations of the lattice properties of cubic and hexagonal diamond,” Phys. Rev. B, Vol. 51, 21, 1998.
[48]S. Fahy, Steven G. Louie and Marvin L. Cohen, “Theoretical total-energy study of the transformation of graphite into hexagonal diamond,” Phys. Rev. B, Vol. 35, 14, 1987.