簡易檢索 / 詳目顯示

研究生: 陳柏豐
Chen, Po-Feng
論文名稱: 多孔氣體燃料噴注之交互作用對超音速燃燒流場影響之數值模擬分析
Numerical simulations and analyses of influences of the interaction of multiple gas fuel injections on supersonic combustion flow
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 超音速燃燒衝壓引擎燃料噴注數值模擬
外文關鍵詞: Supersonic flow, Fuel injection, Numerical simulation
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音速燃燒流場之物理現象極為複雜,涉及噴注與自由流之間的交互作用,包括震波、邊界層分離產生的迴流區與噴注後方的燃燒等現象。因為自由流流速為超音速,且受限於燃燒室長度,故自由流與燃料燃燒反應需在極短的時間完成,否則空氣與燃料便會流出燃燒室,導致燃燒效率不佳。為了提升整體燃燒效率,因此燃料注入的方式多採用多孔噴注,使燃料能平均分佈於燃燒室內。為了分析多孔噴注間之交互作用,本文採用氣態燃料噴注,探討多孔噴注之幾何及操作參數對噴注所產生之震波與迴流區之影響,進而分析超音速流場之燃燒現象。本文使用ANSYS FLUENT,並以噴注距離與噴注孔徑之比值(l/d) 為參數進行數值分析。在孔徑分別為0.5mm及1mm時,分析l/d=2、5及8之流場變化。研究結果顯示,當噴注動量保持不變時,不管孔徑是1mm或0.5mm,其流場型態差異不大。但隨著兩噴注間的距離較近時,兩噴注互相干擾的程度也隨之增加。當l/d=2時,煤油氣體流動的方向受到改變,造成兩噴注前方之迴流區匯流成一,故迴流區比l/d=5及8時大。若進一步探討物質成份分佈的情況則可發現,當l/d=2時,因兩噴注距離較近,造成噴注前方煤油氣體堆積,使空氣無法順利進入兩噴注間之區域。因此,沒有足夠之空氣可以參與反應,造成兩噴注間的區域的燃燒現象比較不明顯。當l/d=2時,弓形震波壓力值較兩噴注間距較遠(l/d=5、8)時低。因為l/d=2時噴注間距較近,使前方迴流區匯流成一個,當自由流流經迴流區最上側,因迴流區高度影響,造成自由流局部流體減速,自由流撞擊噴注形成之高壓區也相對下降。若將兩噴注合而為一,即單噴注面積是l/d=2時的兩倍,並比較單噴注與雙噴注之流場變化。結果顯示,單噴注之煤油氣體流動較為完整,燃燒室流場較為穩定;反觀當l/d=2時,兩噴注互相干擾,煤油氣體流動的方向受到改變,使燃燒現象較不穩定。因此,改變噴注間距,可以影響迴流區的大小、弓形震波的強度及燃燒現象。

    Shocks and recirculating flows will be induced by individual fuel-injections into supersonic flow, and their interaction will significantly affect the supersonic combustion flow. In order to improve combustion efficiency, multiple injections will be used in supersonic combustion flow. The present simulation analyses are aimed toward developing an understanding of how the geometric and operating parameters of multiple fuel injectors affect the shocks and recirculating flows generated by fuel injections. They are also intended to help develop an understanding of the impact of the interaction on the supersonic combustion flow behind the fuel injections. The simulation employs ICEM to establish the model, and ANSYS FLUENT software is used for the simulation. The SST k-ω turbulence model is adopted as the numerical method. We use different distances between jets to investigate the interaction among the jets, such as l/d=2, 5, or 8, where l represents the distance between the jets, and d represents the jet width. The results show that when two jets are far apart, such as l/d=5 or 8, the interaction between the two jets is weak. When we change the distance between the jets to l/d=2, and as the distance between the two jets becomes too close, these distances enhance the interaction of the jets, so the recirculation zone in front of the jets is longer and higher than l/d=8 and l/d=5, respectively. When l/d=2, because the recirculation zone is longer and higher, some part of the air will be affected by this recirculation zone. Its momentum will in turn be reduced, and then the strength of the bow shock will be decreased. When l/d=2, the kerosene vapor changes its flow direction due to obstruction from the other jet, so the kerosene vapor stacks in front of the jet. Therefore, changing the distance between the jets can also change the flow structure, including the recirculation zone, bow shock, and the combustion phenomenon behind the jets. The results will help lead to an understanding of the interaction mechanism for multiple fuel injections and its influence on supersonic combustion flow.

    摘要 I 目錄 XII 表目錄 XIV 圖目錄 XV 符號說明 XXI 第一章 導論 1 §1-1 前言 1 §1-2 文獻回顧 2 §1-3 研究動機與目的 13 第二章 數學與物理模型 15 §2-1 基本假設 15 §2-2 連續相流場統御方程式 16 §2-3 紊流模型 19 §2-4 邊牆函數 21 §2-5 燃燒化學模型 23 第三章 數值方法 26 §3-1 控制體積轉換之傳輸方程式 26 §3-2 壓力耦合演算法 27 §3-3 二階迎風法 29 §3-4 鬆弛因子 30 §3-5 收斂標準 31 第四章 結果與討論 32 §4-1 超音速燃燒室模型與邊界條件 33 §4-2 網格獨立測試 35 §4-3 單噴注超音速流場數值驗證 36 §4-4 多孔噴注器之超音速冷流場 41 4-4-1 噴注前方迴流區 41 4-4-2 氣體濃度分佈 47 4-4-3 弓形震波 49 4-4-4 煤油氣體流線 54 §4-5 多孔噴注超音速燃燒反應流場 57 4-5-1 馬赫數3.75多孔噴注器燃燒室 60 4-5-2 馬赫數2.5多孔噴注器燃燒室 85 第五章 結論與未來工作 98 §5-1 結論 98 §5-2 未來工作 102 參考文獻 104

    【1】 http://en.wikipedia.org/wiki/Scramjet
    【2】 http://en.wikipedia.org/wiki/Ramjet
    【3】 Pandey K. M. and Sivasakthivel T., “Recent Advances in Scramjet Fuel Injection – A Review”, International Journal of Chemical Engineering and Applications, Vol. 1, No.4, December 2010.
    【4】 Ben-Yakar A. and Hanson R. K., “Experimental Investigation of Flame-Holding Capability of a Transverse Hydrogen Jet in Supersonic Cross-Flow”, Proceedings of the Twenty-Seventh International Symposium on Combustion, Combustion Inst. , Pittsburgh PA, pp.2173-2180, 1998.
    【5】 Beloki Perurena J., Asma C. O., Theunissen R. and Chazot O., “Experimental Investigation of Liquid Jet Injection into Mach 6 Hypersonic Crossflow”, Exp. Fluids. Vol.46, pp. 403–417, 2009
    【6】 Guerra R. and Waidmann W., “An Experimental Investigation of the Combustion of a Hydrogen Jet Injected Parallel in a Supersonic Air Stream”, AIAA Paper, pp. 1-11, 1991
    【7】 Lewis Mark J., “Significance of Fuel Selection for Hypersonic Vehicle Range”, Journal of Propulsion and Power, Vol. 17, No. 6, November–December 2001
    【8】 Tetlow M. R., and Doolan C. J., “Comparison of Hydrogen and Hydrocarbon-Fueled Scramjet Engine for Orbital Insertion”, Journal of Spacecraft and Rockets, Vol.44, No.2, March-April 2007.
    【9】 Amati V., Bruno C., Simone D., and Sciubba E., “Exergy Analysis of Hypersonic Propulsion System:Performance Comparison of Two Different Scramjet Configurations at Cruise Conditions”, Energy, Vol.33, pp.116-129, 2008.
    【10】 Manna P., Behera R. and Chakraborty D., “Liquid-Fueled Strut-Based Scramjet Combustor Design: a Computational Fluid Dynamics Approach”, Journal of Propulsion and Power, Vol.24, No.2, March-April 2008.
    【11】 Yu G., Li J.G., Yang S. R., Yue L. J., and Zhang X. Y. “Investigation of Liquid Hydrocarbon Combustion in Supersonic Flow Using Effervescent Atomization”, AIAA Paper 2002-4279.
    【12】 Arai T., and Schetz J.A. “Injection of Bubbling Liquid Jet from Multiple Injectors into a Supersonic Stream”, Journal of Propulsion and Power, Vol.10, No.3, pp. 382-386, 1994.
    【13】 Lin K.C., Kirkendall K.A., Kennedy P. J., and Jackson T.A., “Spray Structures of Aerated Liquid Fuel Jets in Supersonic Crossflows”, AIAA Paper, 99-2374, 1999.
    【14】 Mathur T., Lin K.-C., Kennedy P., Gruber M., Donbar J., Jackson T., and Billig F., “Liquid JP-7 Combustion in a Scramjet Combustor”, AIAA 2000-3581, 2000.
    【15】 Fan X. J., Yu G., Li J. G., Zhang X. Y., and Sung C. J., “Investigation of Vaporized Kerosene Injection and Combustion in a Supersonic Model Combustor”, Journal of Propulsion and Power, Vol. 22, No. 1 , Jan-Feb 2006.
    【16】 Dufour E., and Bouchez M., “Computational Analysis of a Kerosene-Fueled Scramjet”, AIAA Paper 2001-2817, 2001.
    【17】 Rasmussen C.C., Driscoll J.F., Hsu K.Y., Donbar J.M., Gruber M.R., and Carter C.D., “Stability Limits of Cavity-Stabilized Flames in Supersonic Flow”, Proceedings of the Combustion Institute, Vol.30, pp. 2825-2833, 2005.
    【18】 Wepler U., and Koschel W. W., “Numerical Investigation of Turbulent Reacting Flows in a Scramjet Combustor Model”, AIAA Paper 2002-3572, 2002.
    【19】 Menter F. R., “Two Equation Eddy Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, Vol. 32, No. 8, August 1994.
    【20】 Zhang D. W. and Wang Q., “Numerical Simulation of Supersonic Combustor with Innovative Cavity”, Procedia Engineering, Vol.31, pp. 708 – 712.
    【21】 Oevermann M., “Numerical Investigation of Turbulent Hydrogen Combustion in a Scramjet Using Flamelet Modeling”, Aerospace Science and Technology, Vol. 4, pp.463-480, 2000.
    【22】 Debasis C., “Numerical Simulation of Liquid Fueled Scramjet Combustor Flow Fields”, International Journal of Hypersonic, Vol. 1, Number 1, 2010.
    【23】 Chenault C.F., and Beran P.S., “K-ε and Reynolds Stress Turbulence Model Comparisons for Two-Dimensional Injection Flows”, AIAA Journal, Vol. 36, No. 8, August 1998.
    【24】 沈雅蓁, “側向雙垂直噴注於超音速空氣流場之霧化混合探討” 成功大學航空太空工程學系碩士論文, 2015.
    【25】 吳政毅, “使用碳氫燃料之含凹槽超音速燃燒流場數值模擬分析 ” 成功大學航空太空工程學系碩士論文, 2013.
    【26】 鄭瑞圻, “使用液態碳氫燃料之超音速燃燒流場模擬分析 ” 成功大學航空太空工程學系碩士論文, 2013.
    【27】 Wang L., Qian Z. and Gao L., “Numerical Study of the Combustion Field in Dual-Cavity Scramjet Combustor”, Vol. 99, pp. 313–319, 2014.
    【28】 Wang X., Zhong F., Gu H. and Zhang X., “Numerical Study of Combustion and Convective Heat Transfer of a Mach 2.5 Supersonic Combustor”, Applied Thermal Engineering, Vol.89, pp. 883–896, 2015.
    【29】 Kumaran K,. and Babu V., “Investigation of the Effect of Chemistry Model on the Numerical Predictions of the Supersonic Combustion of Hydrogen,” Combustion and Flame,Vol.156, pp.826-841, 2009.
    【30】 Rajasekaran A., and Babu V., “Numerical Simulation of Three-Dimension Reacting Flow in a Model Supersonic Combustor”, Journal of Propulsion and Power, Vol.4, No.4, July-August 2006.
    【31】 Mitani T., and Kouchi T., “Flame Structure and Combustion Efficiency Computed for A Mach 6 Scramjet Engine”, Combustion and Flame, Vol.42, pp.187-196, 2005.
    【32】 宋緯倫, "不同紊流模式對超音速流場數值模擬結果之影響," 成功大學航空太空工程學系碩士論文, 2010.
    【33】 ANSYS FLUENT, “ANSYS FLUENT 15.0 Theory Guide” ANSYS Inc.2013
    【34】 Yan L., Huang W., Li H. and Zhang T.t., “Numerical Investigation and Optimization on Mixing Enhancement Factors in Supersonic Jet-to-Crossflow Flow Fields”, Acta Astronautica, Vol.127, pp. 321–325, 2016.
    【35】 Hassan E., Boles J., Aono H., Davis D. and Shyy W., “Supersonic Jet and Crossflow Interaction: Computational Modeling”, Progress in Aerospace Sciences, Vol.57, pp. 1–24, 2013
    【36】 Iannetti A. C. and Moder J. P., “Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC)Calculations Against Experimental Data for a Turbulent Reacting Flow”, 48th Aerospace Sciences Meeting Sponsored by the American Institute of Aeronautics and Astronautics, NASA/TM-2010-216735, 2010.
    【37】 Parker T. E., Allen M. G., Foutlrer R. R., Reeiecke W. G., Legner H. H., Davis S. J. and Rawlins W. T., “An Experimental Study of Supersonic H_2-Air Combustion in a Shock Tunnel Flow Facility”, Twenty-Fourth Symposium(International) on Combustion/The Combustion Institute, pp.1613-1620, 1992.

    無法下載圖示 校內:2019-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE