簡易檢索 / 詳目顯示

研究生: 賴柏辰
Lai, Po-Chen
論文名稱: 平面度限制下最大銑削材料移除率之研究
A Study on Maximum Material Removal Rate under the Constraint of Flatness in Milling
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 銑削加工平面度最大材料移除率製程變異響應曲面法
外文關鍵詞: milling process, flatness, material removal rate, process variation, response surface methodology
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銑削具有加工高精度複雜形狀工件之能力,廣泛應用於精密製造領域。但其會在工件表面產生殘留應力,導致變形影響工件品質如板件之平面度,因而限制了其使用範圍與機台能力。本論文經由實驗設計及平面度分析,探討如何在符合板件平面度要求下獲得最大材料移除率之銑削加工參數。首先求取在夾具及主軸功率扭矩及轉速限制條件下可實行之銑削加工參數範圍,接著進行響應曲面法之實驗設計,將直交表融入Box-Behnken方法,以較有效率之實驗數量分析銑削參數(轉速、軸向切深與每刃進給)對平面度之影響,並建立平面度之模型。實驗發現製程變異對平面度預測準確性影響甚大,故本文將製程變異納入模型中,以利實際生產製造中求得最大材料移除率之加工參數。實驗分析結果發現高轉速、低每刃進給以及低軸向切深可得較好的板件平面度,而其中以軸向切深影響平面度最劇烈。最後以所建立之具製程變異的平面度模型,成功獲得符合平面度要求之最大材料移除率的銑削參數。

    Milling can achieve complex geometry and high surface quality part. Therefore, milling is widely utilized in precision manufacturing industry. However, milling induces residual stress and deformation, resulting in poor quality parts, such as the flatness of plate. In this article, systematic method of experiment design is used to analyze the influence of flatness on plate and to establish a model of flatness in milling. The model is used to find maximum material removal rate under the constraint of flatness. First, we utilize the cutting coefficients and convolution milling force model to find the milling parameters under the limit of vacuum chuck and spindle. Then, we use response surface methodology and combination of orthogonal array (L9) and Box-Behnken design in order to analyze milling parameter of flatness and obtain an accurate model of flatness with efficient number of experiments. Also, the flatness model considers process variation due to the fact that it is more efficient for industry. The result of experiment showed that high speed, low feed per tooth and low depth of cut constitute the key parameters for better flatness. Finally, we use the derived flatness model incorporating process variation effect to find the optimal process parameters to achieve the maximum material removal rate under the constraint of flatness.

    中文摘要 I ABSTRACT II 致謝 III 總目錄 IV 表目錄 VIII 圖目錄 XI 符號說明 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2文獻回顧 2 1.2.1 銑削力模式回顧 2 1.2.2田口法與響應曲面法之文獻回顧 4 1.3 研究範疇與架構 5 第二章 端銑刀之銑削力模式 6 2.1 銑削幾何與座標 6 2.2角度域銑削力 9 2.2.1基本切削函數 9 2.2.2 屑寬密度函數 10 2.2.3 刀刃序列函數 11 2.2.4 角度域總銑削力 12 2.3頻率域總銑削力 14 2.3.1總銑削力之頻域轉換 14 2.3.2比切削力常數之計算 15 第三章 田口法及響應曲面法之簡介 16 3.1 田口法簡介 16 3.1.1 因子水準與品質特性之選定 16 3.1.2 直交表之配置與其特性 17 3.1.3 SN比之意義 19 3.1.4 回應圖表之建立 19 3.1.5 田口變異數分析(ANOVA) 21 3.2 響應曲面法簡介 22 3.2.1 Box-Behnken方法與中央合成設計之簡介 22 3.2.2 迴歸分析模式建立 26 3.2.3 迴歸分析之變異數分析 27 3.2.4 F檢定與t檢定 28 3.2.5 模型自變數篩選 30 3.2.6 殘差分析 32 3.2.7 預測值之信賴區間 33 第四章 實驗規劃與設備 34 4.1 前言 34 4.2實驗規劃 34 4.3 銑削加工限制條件之實驗設備 38 4.3.1 比切削係數之實驗設備 38 4.4 板件平面度模式建立實驗與平面度量測方式 39 第五章 求得銑削限制條件下可實行之加工參數範圍 44 5.1前言 44 5.2 銑削力限制條件下可實行之加工參數範圍 44 5.2.1 前導實驗-比切削係數之實驗 44 5.2.2 真空夾具之限制條件 48 5.3銑削功率與扭矩限制下可實行之加工參數範圍 50 5.4銑削加工限制條件下可實行之銑削參數 54 第六章 板件平面度模型建立及求得最大移除率之銑削參數 58 6.1前言 58 6.2 板形工件銑削加工順序規劃 58 6.2.1前導實驗-殘留應力影響深度實驗 58 6.2.2 銑削加工順序規劃 63 6.3以田口法分析銑削參數對平面度影響 63 6.3.1 田口法與Box-Behnken之實驗配置 64 6.3.2 田口法分析 65 6.4 板件平面度模型之建立 69 6.4.1 以Box-Behnken方式為實驗配置建立平面度之模型 69 6.4.1.1 三因子Box-Behnken之實驗結果 69 6.4.1.2 平均值之板件平面度模型的建立 71 6.4.2 以Box-Behnken方法與中央合成設計建立平面度響應曲面 73 6.4.2.1 中央合成設計之實驗結果 73 6.4.2.2以Box-Behnken與中央合成設計建立平面度響應曲面 74 6.5 最大材料移除率之銑削參數的求得 77 6.5.1 以平均值平面度模式求得最大材料移除率之銑削參數 77 6.5.2 以具製程變異之平面度模型求得最大移除率之銑削參數 81 6.5.2.1板形工件之製程變異實驗 81 6.5.2.2 於具製程變異之平面度模型中求得最大移除率之銑削參數 83 6.5.3 於全域銑削參數中求得最大材料移除率參數 85 第七章 結論與建議 89 7.1結論 89 7.2建議 90 參考文獻 91

    Alauddin, M., M. A. El Baradie, and M. S. J. Hashmi. "Computer-aided analysis of a surface-roughness model for end milling," Journal of Materials Processing Technology 55.2, pp. 123-127, 1995.
    Bagci, Eyup, and Şeref Aykut. "A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6) , " The International Journal of Advanced Manufacturing Technology 29.9-10, pp. 940-947, 2006
    Bouzid Saı̈, W., N. Ben Salah, and J. L. Lebrun. "Influence of machining by finishing milling on surface characteristics. ," International Journal of Machine Tools and Manufacture 41.3, pp. 443-450, 2010
    Denkena, B., D. Boehnke, and L. De Leon. "Machining induced residual stress in structural aluminum parts," Production Engineering 2.3, pp. 247-235, 2008
    El-Axir, M. H. "A method of modeling residual stress distribution in turning for different materials," International Journal of Machine Tools and Manufacture 42.9, pp. 1055-1063, 2002
    Fuh, Kuang-Hua, and Hung-Yen Chang. "An accuracy model for the peripheral milling of aluminum alloys using response surface design," Journal of materials processing technology 72.1 , pp. 42-47, 1997
    Ghani, J. A., I. A. Choudhury, and H. H. Hassan. "Application of Taguchi method in the optimization of end milling parameters," Journal of Materials Processing Technology 145.1, pp. 84-92, 2004
    Jeelani, S., S. Biswas, and R. Natarajan. "Effect of cutting speed and tool rake angle on residual stress distribution in machining 2024-T351 aluminium alloy—unlubricated conditions," Journal of materials science 21.8, pp. 2705-2710, 1986
    Koenigsberger, F., and Sabberwal, A. J. P. "An Investigation into the Cutting Force Pulsations During Milling Operations," International Journal of Machine Tool Design and Research 1, pp.15-33, 1961
    Krishankant, Jatin Taneja, Mohit Bector, Rajesh Kumar. "Application of Taguchi Method for Optimizing Turning Process by the effects of Machining Parameters," International Journal of Engineering and Advanced Technology 2, pp. 263-274.,2012
    Kwak, Jae-Seob. "Application of Taguchi and response surface methodologies for geometric error in surface grinding process," International Journal of Machine Tools and Manufacture 45.3, pp. 327-334, 2005
    Liu, Z., Xu, J., Han, S., Chen, M. "A coupling method of response surfaces (CRSM) for cutting parameters optimization in machining titanium alloy under minimum quantity lubrication (MQL) condition," International Journal of Precision Engineering and Manufacturing 14.5, pp. 693-702, 2013
    Logothetis, N., and A. Haigh. "Characterizing and optimizing multi‐response processes by the taguchi method," Quality and Reliability Engineering International 4.2, pp. 159-169, 1988
    M’saoubi, R., Outeiro, J. C. "Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels," Journal of materials processing technology96.1, pp. 225-233, 1999
    Martellotti, M. E. "An Analysis of the Milling Process, Part 2: Down Milling," Transaction of ASME, Vol. 67, pp. 233-251, 1945
    Martellotti, M. E. "An Analysis of the Milling Process," Transaction of ASME, Vol. 63, pp.677-700, 1941
    Melkote, S. N.and Endres W. J. "The Importance of Including Size Effect When Modeling Slot Milling," ASME Journal of Manufacturing Science and Engineering 120, pp. 69-75, 1988
    Nalbant, M., H. Gökkaya, and G. Sur. "Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning," Materials & design 28.4, pp. 1379-1385, 2007
    Öktem, H., T. Erzurumlu, and H. Kurtaran. "Application of response surface methodology in the optimization of cutting conditions for surface roughness," Journal of Materials Processing Technology 170.1 , pp. 11-16, 2005
    Pai. D. , Rao S., Shetty R. "Application of Taguchi and Response Surface Methodologies for Metal Removal Rate and Surface Roughness in Grinding of Drac’s," International Journal of Engineering and Management Sciences 3, pp. 1-8.,2012
    Palanikumar, K. "Application of Taguchi and response surface methodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling," The International Journal of Advanced Manufacturing Technology 36.1-2, pp. 19-27, 2008
    Routara, B. C., A. Bandyopadhyay, and P. Sahoo. "Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation," The International Journal of Advanced Manufacturing Technology 40.11-12, pp. 1166-1180, 2009
    Sabberwal, A. J. P. “Chip Section and Cutting Force During the Milling Operation," Annals of the CIRP 10, pp. 197-203., 1961
    Salio, M., T. Berruti, and G. De Poli. "Prediction of residual stress distribution after turning in turbine disks," International journal of mechanical sciences 48.9, pp. 976-984, 2006
    Shaji, S., and V. Radhakrishnan. "Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method," Journal of Materials Processing Technology 141.1, pp. 51-59, 2003
    Sridhar, B. R., Devananda, G., Ramachandra, K., Bhat, R. "Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834," Journal of Materials Processing Technology 139.1 ,pp. 628-634, 2003
    Thamizhmanii, S., S. Saparudin, and S. Hasan. "Analyses of surface roughness by turning process using Taguchi method," Journal of Achievements in Materials and Manufacturing Engineering 20.1-2, pp. 503-506, 2007
    Wang, J. J. "Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification," ph.D.thesis, School of Mechanical Engineering, Georgia Institute of Technology, April., 1992
    Wang, J. J. J., Liang, S. Y., Book, W. J. "Convolution analysis of milling force pulsation," Journal of engineering for industry 116.1, pp. 17-52, 1994
    Wang, M. Y., Chang, H. Y. "Experimental study of surface roughness in slot end milling," International Journal of Machine Tools & Manufacture 44, pp.51-57., 2004
    Yang, W. H., and Y. S. Tarng. "Design optimization of cutting parameters for turning operations based on the Taguchi method," Journal of Materials Processing Technology 84.1, pp. 122-129, 1998
    Zhang, Julie Z., Joseph C. Chen, and E. Daniel Kirby. "Surface roughness optimization in an end-milling operation using the Taguchi design method," Journal of Materials Processing Technology 184.1 , pp. 233-239, 2007
    Zhang, S., T. C. Ding, and J. F. Li. "Determination of surface and in-depth residual stress distributions induced by hard milling of H13 steel," Production Engineering 6.4-5, pp. 375-383, 2012
    李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2012
    葉怡成,高等實驗計畫法,五南圖書出版股份有限公司,頁66~265,2009
    黎正中,穩健設計之品質工程,台北圖書有限公司,1993
    黎正中,實驗設計與分析,高力圖書有限公司,頁13-1~14-88,1998

    下載圖示 校內:2014-08-08公開
    校外:2014-08-08公開
    QR CODE