| 研究生: |
王俊富 Wang, Chun-Fu |
|---|---|
| 論文名稱: |
應用DQEM離散法及EDQ時間積分法於求解具剪變形之軸對稱複合圓板的動態反應 |
| 指導教授: |
陳長鈕
Chen, Chang-New |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 延伸式數值積分表示微分 、數值積分表示微分法 、軸對稱複合圓板 |
| 外文關鍵詞: | DQM, EDQ, DQEM |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文主要是採用數值積分表示微分元素法(Differential Quadrature Element Method,DQEM)針對軸對稱複合圓板,將求解出來的質量矩陣、和勁度矩陣再應用延展式數值積分表示微分法(Extended Differential Quadrature,EDQ)中的時間積分法來求解複合圓板的動態反應。
起初利用DQ的方法去離散每一個元素上的統御方程式,並利用連接條件定義每一個元素內部的邊界。它是數值積分表示微分元素法的分析模型。
選用EDQ時間積分法來解動態的平衡方程式。其中有發展出兩種不同的演算法,為時間元素對時間元素的積分演算法和Stages by Stages 積分演算法。本論文則採用時間元素對時間元素積分演算法分析軸對稱複合圓板動態反應。
ABSTRACT
This paper uses differential quadrature element method (DQEM) to solve axisymmetric isotropic composite circular plates. The dynamic response can be solved by extended differential quadrature (EDQ) time integration method.
The approach uses the differential quadrature to discretize the governing equations defined on each element, the transition conditions defined on the inter-element boundary. It is a differential quadrature element method analysis model.
The time integration method adopting the extended differential quadrature is used to solve the dynamic equilibrium equation. There are two different approaches for developing the integration algorithms. There ara time-element by time-element integration algorithms and stages by stages integration algorithms. This paper uses time-element by time-element integration algorithms to solve dynamic response.
參考文獻
【1】 Bellman, R.E. and Casti, J., “Differential Quadrature and Long-term Itegration”, Journal of Mathematical Analysis and Application, Vol. 34, pp.235-238, 1971.
【2】 Bellman, R.E., Kashef, B.G. and Casti, J.,“Differential Quadrature:A technique for the rapid solution of nonlinear partial differential equation”,Journal Computer phy., Vol.10, pp.40-52, 1972.
【3】 Bellman, R.E.,“Method of Nonlinear Analysis”, Vol.Ⅱ, Chap.16, Academic Press, New York, 1973.
【4】 Bapu Rau, M.N. and Kumaran, K.S.S.,“Finite Element Analysis of Mindlin Plates”,Transactions of the ASME, Journal of mechanical design, Vol.101, pp.619-624, 1979.
【5】 Civan, F. and Sliepecevich, C.M., “Differential Quadratural to Transport Processes”, Journal Mathematical Analysis and Application, Vol.93, pp.206-221, 1983.
【6】 Civan, F. and Sliepecevich, C.M., “Differential Quadratural for Multi-dimensional Problems”, Journal Mathematical Analysis and Application, Vol.101, pp.423-443, 1984.
【7】 Chen, C.N.,“A Differential Quadrature Element Method”,In Proceeding of the 1st International Conference on Engineering Computation and Computer Simulation,Changsha,China, Vol.1, pp.25-34, 1995.
【8】 Chen, C.N.,“The Two-Dimensional Differential Quadrature Element Method Frame Model”,In Proceedings of the 15th International Conference on Offshore Mechanics and Arctic Engineering, Vol.1, pp.283-290, 1996.
【9】 Chen, C.N.,“Extended Differential Quadrature”,Applied Mech-
anics in the Americas, American Academy of Mechanics, Vol.6, pp.389-392, 1998.
【10】 Chen, C.N.,“Differential Quadrature Element Analysis Using Extend Differential Quadrature”,Computer and Mathematics with Applications
, Vol.39, pp.65-79, 1999.
【11】 Chen, C.N.,“A Generalized Differential Quadrature Element Method”, Computer Methods in Applied Mechanics and Engineering, Vol.188, pp.553-566, 2000.
【12】 Chen, C.N.,“Vibration of Nonuniform Shear Deformable Axisy-
mmetric Orthotropic Circular Plates Solved by DQEM”,Composite Structures, Vol.53, pp.257-264, 2001.
【13】 Du, H., Lim, M.K. and Lin, R.M.,“Application od Generalized Differential Quadrature Method to Structural Problem”, International Journal for Numerical Method in Engineering, Vol.37, pp.1881-1896, 1996.
【14】 Han, J.-B. and Liew, K.M.,“Analysis of Moderately Thick Circular Plates Using Differential Quadrature Method”,Journal of Engineering Mechanics, Vol.123, No.12, pp.1247-1252, 1997.
【15】 Jang, S.K., Bert, C.W. and Striz, A.G., “Application of Differential Quadrature to Static Analysis of Structural Components”, International Journal for Numerical Methods in Engineering, Vol.28, pp.561-577, 1989.
【16】 Lehnhoff, T.F. and Miller, R.E.,“Influence of Transverse Shear on the Small Displacement Theory of Circular Plate”, AIAA Journal, Vol.7, No.8, pp.1499-1505, 1969.
【17】 Lekhnitskii, S.G.,“Anisotropic Plates”,Gordon and Breach Science Publisher, New York, 1968.
【18】 Minkarah, I.A. and Hoppmann, W.H.,“Flexural Vibrations of Cylindrically Aeolotropic Circular Plates”,The Journal of the Acoustical Society of America, Vol.36, No.3, pp.470-475, 1964.
【19】 Mirza, S. and Singh A.V.,“Axisymmetric Vibrations of Circular Sandwich Plates”,AIAA Journal, Vol.12, pp.1418-1420,1974.
【20】 Perakatte, G.J. and Lehnhoff, T.F.,“Flexure of Symmetrically Loaded Circular Plates Including the Effect of Transverse Shear”, Transactions of the ASME,Journal of Applied Mechanics, Vol.38, pp.1036-1041, 1971.
【21】 Pardoen, G.C., “Static, Vibration and Buckling Analysis of Axisym- metric Circular Plates Using Finite Elements”,Computers&Structures, Vol.3, PP.355-375, 1973.
【22】 Ramaiah, G.K. and Vijayakumar, K.,“Natural Frequencies of Polar Orthotropic Annular Plates”,Journal of Sound and Vibration, Vol.26, No.4, pp.303-310, 1973.
【23】 Stavaky, Y. and Loewy, R.,“Axisymmetric Vibrations of Isotropic Composite Circular Plates”,The Journal of the Acoustical Society of America, Vol.49, pp.1542-1550, 1971.
【24】 Shu, C. and Richards B.E.,“Application of Generalized Differential Quadrature to Solve Two-Dimensional Incompressible Navier-Stokes Equations”,International Journal for Numerical Methods in Fluids, Vol.15, pp.791-798, 1992.
【25】 宋治勇 “數值積分表示微分元素法振動分析模式” ,國立成功大學造船及船舶機械工程研究所碩士論文,1996.
【26】 邱富勇 “變斷面柱挫曲問題之數值積分表示微分元素法分析模式” ,國立成功大學造船及船舶機械工程研究所碩士論文,1998.
【27】 莊貴欽 “考慮剪變形之數值積分表示微分元素法複合及等向性非均一厚度圓板分析模式” , 國立成功大學造船及船舶機械工程研究所碩士論文,1999.
【28】 黃志偉 “數值積分表示微分元素法剪變形變斷面樑分析模式” , 國立成功大學造船及船舶機械工程研究所碩士論文,1997.
【29】 謝明錡 “數值積分表示微分元素法具彈性基座樑分析模式” , 國立成功大學造船及船舶機械工程研究所碩士論文,1997.
【30】 Reismann, H., “Elastic Plates:Theory and Application”, Wiley, New York, 1988.
【31】 林政仁,陳新郁 譯 “有限元素分析-理論與應用ANSYS”, 高立圖書有限公司, 台北縣, 2001。