簡易檢索 / 詳目顯示

研究生: 林璟
Lin, Ching
論文名稱: 空間廣義線性混合效應模型應用於西蒙任務之功能性磁振影像研究
Spatial Generalized Linear Mixed Effect Models to an fMRI Study of Simon Task
指導教授: 李國榮
Lee, Kuo-Jung
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 43
中文關鍵詞: 西蒙任務功能性磁振影像資料階層模型
外文關鍵詞: Simon task, fMRI data, hierarchical model
相關次數: 點閱:72下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出貝氏階層模型去分析功能性磁振影像資料。功能性磁振影像資料通常具有巨大的資料量且同時存在時間與空間的特性。一些研究指出,空間的相依性不只存在於信號變化的大小,同時也發生在時間相關上。然而,在現有大多數研究中為了計算效率而不考慮時間相關上的空間相依性。本篇論文應用空間隨機效果模型(spatial random effect model) 同時考慮信號和時間相關的空間相依性。透過模擬,我們發現提出的方法可以增加識別大腦區域對刺激反應的準確率。最後,我們透過模擬的結果及一個實際的事件相關功能性磁振影像資料來探討模型的特性。

    A spatial Bayesian hierarchical model is proposed to analyze functional magnetic resonance imaging (fMRI) data. Typical fMRI experiments generate massive datasets with complex spatial and temporal structures. Several studies have found that the spatialdependence not only appears in signal changes but also in temporal correlations among voxels; however, current statistical approaches ignore the spatial dependence of temporal correlations to gain computational efficiency. We incorporated the spatial random effects model to simultaneously model spatial dependence arising from both signal changes and temporal correlations. Through simulation studies to demonstrate that the proposed approach increases the accuracy of the detection of brain activities while keeping computationally feasible. Finally, we apply a real event-related fMRI data to further illustrate the usefulness of the proposed model.

    摘要............................................................................I Abstract........................................................................II Acknowledgements................................................................III Contents........................................................................IV List of Figures.................................................................VI List of Tables..................................................................VII 1 Introduction..................................................................1 2 Statistical Modelling.........................................................4 2.1 Bayesian Formulation........................................................5 2.2 Spatial Models..............................................................7 2.3 Priors......................................................................8 2.4 Posterior and Monte Carlo Estimates.........................................10 2.5 Activation Classification...................................................11 3 Simulation Studies............................................................13 3.1 Benchmark Example...........................................................13 3.2 Different Spatial Dependence Structures.....................................17 3.3 Parcellation Effect.........................................................19 3.4 Task Contrasts..............................................................21 4 Application...................................................................24 4.1 Design and procedures.......................................................25 4.2 Activation Detection........................................................27 4.3 Contrast Effect.............................................................30 4.4 Activated region............................................................30 5 Conclusion and Discussion.....................................................32 References......................................................................34 Appendix A Posterior Distribution and Full Conditionals.........................39

    Aguirre, G. K., Zarahn, E., and D’Esposito, M. (1997). Empirical analyses of BOLD fMRI
    statistics. II. Spatially smoothed data collected under null-hypothesis and experimental
    conditions. NeuroImage, 5:199–212.
    Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004). Hierarchical Modeling and Anal-
    ysis for Spatial Data. Chapman and Hall/CRC Monographs on Statistics and Applied
    Probability.
    Barbieri, M. and Berger, J. O. (2004). Optimal predictive model selection. Annals of
    Statistics, 32:870–897.
    Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
    and powerful approach to multiple testing. Journal of the Royal Statistical Society,
    Series B, 57:289–300.
    Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with
    discussion). Journal of the Royal Statistical Society, 36:192–236.
    Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with two applica-
    tions in spatial statistics. Annals of the Institute of Statistical Mathematics, 43:1–20.
    Bezener, M., Hughes, J., and Jones, G. L. (2015). Bayesian spatiotemporal modeling using
    hierarchical spatial priors with applications to functional magnetic resonance imaging.
    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001).
    Conflict monitoring and cognitive control. Psychological Review, 108:624–652.
    Bowman, F., Caffo, B., Bassett, S., and Kilts, C. (2008). A bayesian hierarchical frame-
    work for spatial modeling of fmri data. NeuroImage, 39:146–156.
    Caffo, B., Bowman, F., Eberly, L., and Bassett, S. (2011). A markov chain monte carlo
    based analysis of a multilevel model for functional mri data. In Brooks, S., Gelman,
    A., Jones, G., and Meng, X.-L., editors, Handbook of Markov Chain Monte Carlo. CRC
    Press, Boca Raton, FL.
    Cressie, N. (1993). Statistics for Spatial Data. New York, NY: Wiley.
    Cvetković, D. M., Doob, M., and Sachs, H. (1998). Spectra of Graphs: Theory and
    Applications (3rd ed.). New York, NY: Wiley.
    Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain
    Mapping, 8:109114.
    Detre, J. A. and Floyd, T. (2001). Functional MRI and its applications to the clinical
    neurosciences. The Neuroscientist, 7:64–79.
    FMRIB, Oxford, U. (2015). Fmrib software library.
    Forstmann, B. U., van den Wildenberg, W. P. M., and Ridderinkhof, K. R. (2008). Neu-
    ral mechanisms, temporal dynamics, and individual differences in interference control.
    Journal of Cognitive Neuroscience, 20:1854–1865.
    Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., and Frackowiak, R.
    S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping,
    2:165–189.
    Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., and Penny, W. D. (2007).
    Statistical parametric mapping: The analysis of funtional brain images. Elsevier/Aca-
    demic Press.
    Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Ruggb, M., and Turner, R. (1998).
    Event-related fmri: characterizing differential responses. Neuroimage, 7:30–40.
    Gelman, A. (1992). Iterative and non-iterative simulation algorithms. Computing Science
    and Statistics, 24:433–438.
    Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions and the
    bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
    Intelligence, 6:721–741.
    Genovese, C. (2000). A bayesian time-course model for functional magnetic resonance
    imaging data. Journal of the American Statistical Association, 95:691–703.
    Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps
    in functional neuroimaging using the false discovery rate. NeuroImage, 15:870–878.
    George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection.
    Statistica Sinica, 7:339–374.
    Glover, G. H. (1999). Decovolution of impulse response in event-related bold. NeuroImage,
    9:416–429.
    Goldsmith, J., Huang, L., and Crainceanu, C. M. (2014). Smooth scalar-on-image regres-
    sion via spatial bayesian variable selection. Journal of Computational and Graphical
    Statistics, 23:46–64.
    Gössl, C., Fahrmeir, L., and Auer, D. P. (2001). Bayesian spatiotemporal inference in
    functional magnetic resonance images. Biometric, 57:554–562.
    Hasbroucq, T. and Guiard, Y. (1991). Stimulus-response compatibility and the simon
    effect: Toward a conceptual clarification. Journal of Experimental Psychology, 17:246–
    266.
    Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their
    applications. Biometrika, 57:97–109.
    Hommel, B. (1995). Conflict versus misguided search as explanation of sr correspondence
    effects. Acta Psychologica, 89:37–51.
    Huettel, S. A., Song, A. W., and McCarthy, G. (2009). Functional Magnetic Resonance
    Imaging. Sinauer Associates.
    Hughes, J. and Haran, M. (2013). Dimension reduction and alleviation of confounding for
    spatial generalized linear mixed models. Journal of the Royal Statistical Society Series
    B, 75:139–159.
    Kelshall, J. E. and Wakefield, J. C. (1999). Discussion of “Bayesian models for spatially
    correlated disease and exposure data”. In Best, N. G., Waller, L., Thomas, A., Conlon,
    E. M., and Arnold, R., editors, In Bernardo, J. M., Berger, J. O., Dawid, A. P. and
    Smith, A. F. M. (eds), Bayesian Statistics 6, pages 147–150. Oxford University Press.
    Lee, K., Jones, G. L., Caffo, B., and Bassett, S. (2014). Spatial bayesian variable selection
    models on functional magnetic resonance imaging time-series data. Bayesian Analysis,
    9:699–732.
    Lindquist, M. A., Atlas, J. M. L. L. Y., and Wager, T. D. (2009). Modeling the hemo-
    dynamic response function in fmri: Efficiency, bias and mis-modeling. NeuroImage,
    45:S187–198.
    Liu, X., Banich, M., Jacobson, B., and Tanabe, J. (2004). Common and distinct neural
    substrates of attentional control in an integrated Simon and spatial Stroop task as
    assessed by event-related fMRI. Neuroimage, 22:1097–1106.
    Lu, C. H. and Proctor, R. W. (1995). The influence of irrelevant location information on
    performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin
    & Review, 2:174–207.
    Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W. L., and Nichols, T. E. (2006). Non-white
    noise in fmri: Does modelling have an impact? NeuroImage, 29:54–66.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Telle, E. (1953).
    Equation of state calculations by fast computing machines. The Journal of Chemical
    Physics, 21:1087–1092.
    Nee, D. E., Jonides, J., and Berman, M. G. (2007). Interference resolution: Insights from a
    meta-analysis of neuroimaging tasks. Cognitive, Affective, and Behavioral Neuroscience,
    7:1–17.
    Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differen-
    tial gene expression with a semiparametric hierarchical mixture method. Biostatistics,
    5:155–176.
    Penny, W., Kiebel, S., and Friston, K. (2003). Variational Bayesian inference for fMRI
    time series. NeuroImage, 19:727741.
    Penny, W. D., Trujillo-Barreto, N. J., and Friston, K. J. (2005). Bayesian fmri time series
    analysis with spatial priors. NeuroImage, 24:350 – 362.
    Rajapakse, J. C., Kruggel, F., and Cramon, J. M. M. D. Y. (1998). Modeling hemo-
    dynamic response for analysis of functional mri time-series. Human Brain Mapping,
    6:283–300.
    Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., and Nieuwenhuis, S. (2004). The role
    of the medial frontal cortex in cognitive control. Science, 306:443–447.
    Roswarski, T. E. and Proctor, R. W. (2003). The role of instructions, practice, and
    stimulus-hand correspondence on the simon effect. Psychological Research, 67:43–55.
    Simon, J. R., Acosta, E., Mewaldt, S. P., and Speidel, C. R. (1976). The effect of an
    irrelevant directional cue on choice reaction time: Duration of the phenomenon and its
    relation to stages of processing. Perception and Psychophysics, 19:16–22.
    Simon, J. R. and Rudell, A. P. (1967). Auditory s-r compatibility: the effect of an irrelevant cue on information processing. Journal of applied psychology, 51:300–304.
    Smith, D. and Smith, M. (2006). Estimation of binary markov random fields using markov
    chain monte carlo. Journal of Computational and Graphical Statistics, 15:207–227.
    Smith, M. and Fahrmeir, L. (2007). Spatial Bayesian Variable Selection with Application
    to Functional Magnetic Resonance Imaging. Journal of the American Statistical Asso-
    ciation, 102:417–431.
    Smith, M., Pütz, B., Auer, D., and Fahrmeirc, L. (2003). Assessing brain activity through
    spatial Bayesian variable selection. NeuroImage, 20:802–815.
    Stefanie, K., Sämann, P. G., and Fahrmeir, L. (2014). Classification of brain activation
    via spatial bayesian variable selection in fmri regression. Advances in Data Analysis and
    Classification, 8:63–83.
    Vallesi, A., Mapelli, D., Schiff, S., Amodio, P., and Umiltá, C. (2005). Horizontal and
    vertical simon effect: different underlying mechanisms? Cognition, 96:33–43.
    Wen, T. and Hsieh, S. (2015). Neuroimaging of the joint Simon effect with believed
    biological and non-biological co-actors. Frontiers in Human Neuroscience, 9:1–13.
    Whittle, P. (1954). On stationary process in the plane. Biometrika, 41:434–449.
    Woolrich, M., Jenkinson, M., Brady, J., and Smith, S. (2004). Fully Bayesian Spatio-
    Temporal Modeling for fMRI Data. IEEE Transactions on Medical Imaging, 23:213–
    231.
    Woolrich, M. W., Ripley, B. D., Brady, M., and Smith, S. M. (2001). Temporal autocor-
    relation in univariate linear modeling of fmri data. NeuroImage, 14:1370–1386.
    Xia, J., Liang, F., and Wang, Y. M. (2009). Fmri analysis through Bayesian variable
    selection with a spatial prior. IEEE Int. Symp. on Biomedical Imaging (ISBI), pages
    714–717.
    Zhang, L., Guindani, M., and Vannucci, M. (2015). Bayesian models for functional mag-
    netic resonance imaging data analysis. Wiley Interdisciplinary Reviews: Computational
    Statistics, 7:21–41.

    下載圖示 校內:2021-06-01公開
    校外:2021-06-01公開
    QR CODE