簡易檢索 / 詳目顯示

研究生: 武珈言
Woo, Jia-Yen
論文名稱: 棘阿米巴核糖核苷酸還原酶之功能探討
Functional characterization of Acanthamoeba castellanii ribonucleotide reductase
指導教授: 林威辰
Lin, Wei-Chen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: 棘阿米巴角膜炎核糖核苷酸還原酶活性氧化物質
外文關鍵詞: Acanthamoeba keratitis, ribonucleotide reductase, reactive oxygen species
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 棘阿米巴原蟲 (Acanthamoeba castellanii) 是一種自由營生的真核單細胞生物,廣泛存在於各種自然環境中。平時以活動體(trophozoite)存在,若環境惡劣時,則會轉為囊體(cyst)以利生存。同時棘阿米巴也是一種伺機性病原,當感染者為免疫不全或是大量使用類固醇者才會導致嚴重之疾病。但是棘阿米巴角膜炎 (Acanthamoeba keratitis, AK)多會發生在免疫功能正常之隱形眼鏡配戴者身上。由於現階段的棘阿米巴診斷和治療技術皆缺乏快速和準確性,因此如何做好預防措施是相當重要的議題。目前隱形眼鏡保養液所加入的殺原蟲成分大致分為過氧化氫(hydrogen peroxide, H2O2)和聚六亞甲基雙胍 (Polyhexamethylene biguanide, PHMB)兩大類。先前針對棘阿米巴抵抗過氧化氫的機制探討報告中指出:其他物種常見用來對抗氧化壓力的超氧化物歧化酶 (Superoxide dismutase, SOD),在棘阿米巴中並不會受到過氧化氫的刺激提高其表現。本篇研究中,我們發現具DNA修復功能的核糖核苷酸還原酶(Ribonucleotide reductase, RNR) 會與細胞中游離的二價鐵離子(Fe2+)螯合,進而降低自由基的產生,防止DNA受到損害。當棘阿米巴蟲體受到過氧化氫刺激和紫外光曝曬後,核糖核苷酸還原酶會大量表現,而刺激前預先以抗氧化藥物:乙醯半胱氨酸(N-Acetyl L-Cysteine, NAC)處理蟲體,核糖核苷酸還原酶更表現出對活性氧化物質(Reactive oxygen species, ROS)的高度敏感性。當蟲體中核糖核苷酸還原酶ACA_119180的表現受到抑制,過氧化氫能更有效的消滅原蟲。此外,我們也發現棘阿米巴核糖核苷酸還原酶其中兩個同分異構物ACA1_066210和ACA1_066200的基因並不存在於高抗藥性臨床蟲株NCKH_B和NCKH_D中。總結以上結果,本篇論文是首篇探討棘阿米巴核糖核苷酸還原酶對抗氧化壓力機制的研究,我們證實了其各個同分異構物的存在和表現量,也看到了其對抗氧化壓力的潛能,相信此將有利於預防棘阿米巴角膜炎的感染,甚至是治療。

    Acanthamoeba species are free-living eukaryotic protozoa which are ubiquitous in nature. These free-living protozoa can exist as motile trophozoites and dormant cysts in many environments. Acanthamoeba species are also opportunistic human parasites which are rare and typically occur in persons with a compromised immune system, but Acanthamoeba keratitis (AK) is the exception. Although the number of AK reported cases worldwide is increasing year after year, mostly in contact lens wearers, the adequately effective diagnosis and treatments against AK are still lacking. Hydrogen peroxide (H2O2) and polyhexamethylene biguanide (PHMB) are two key disinfectants of contact lens solution for AK prevention. Previous study showed that superoxide dismutases (SODs), which are the enzymes that play a pivotal role in metabolizing oxidative stresses, were not induced after the treatment of H2O2 in Acanthamoeba castellanii. We discovered that A. castellanii ribonucleotide reductases (AcRNRs) chelated ferrous (Fe2+) iron compounds and blocked fenton reaction to decrease the formation of hydroxyl radicals and retard DNA damage. In this study, AcRNRs were induced by UV-C exposure and different dosages of H2O2. AcRNRs also showed the high sensitivity to reactive oxygen species (ROS) when we exposed A. castellanii under different dosages of H2O2 after N-Acetyl L-Cysteine (NAC) pretreatment. The tolerance of H2O2 in A. castellanii was down-regulated after we knocked down RNA expression of the AcRNRs isoform ACA1_119180. In addition, we found gene deficiency for two of AcRNRs isoforms (ACA1_066200 and ACA1_066210) from the PHMB-resistant clinical strains (NCKH_B and NCKH_D). Overall, this study is the first report to confirm the existence and expression level of AcRNRs in A. castellanii and to validate AcRNRs antioxidant activity. We hope this study can help people to clarify the mechanism of antioxidation in A. castellanii and improve the prevention and treatment of AK.

    中文摘要 I ABSTRACT II 誌謝 III CONTENTS IV TABLE LIST VII FIGURE LIST VIII CHAPTER 1 INTRODUCTION 1 1.1 Acanthamoeba castellanii 1 1.1.1 Life cycle of Acanthamoeba castellanii 2 1.1.2 Virulence factor of Acanthamoeba castellanii 3 1.2 Acanthamoeba castellanii-associated diseases (ACADs) 4 1.2.1 The diagnosis of Acanthamoeba castellanii-associated diseases 5 1.2.2 The treatments of Acanthamoeba castellanii-associated diseases 6 1.2.3 The preventions of Acanthamoeba castellanii-associated diseases 7 1.3 Ribonucleotide Reductase (RNR) 8 1.3.1 Classification of ribonucleotide Reductase 9 1.3.2 Association between ribonucleotide reductase and reactive oxygen species 11 Specific Aims and Goal 12 CHAPTER 2 MATERIALS AND METHODS 14 2.1 Materials 14 2.1.1 Cell strains 14 2.1.2 Chemicals and other materials 14 2.2 Methods 17 2.2.1 Strains and cell culture 17 2.2.2 Cell injury assay 18 2.2.3 Total RNA isolation and cDNA synthesis 18 2.2.4 Purification of genomic DNA 19 2.2.5 Gene silencing methodology 20 2.2.6 Reverse transcription PCR 20 CHAPTER 3 RESULTS 21 3.1 Different stresses caused A. castellanii standard strain ATCC_30010 cell injury 21 3.1.1 Chemical oxidant: H2O2 caused A. castellanii standard strain ATCC_30010 DNA damage and death 21 3.1.2 Physical radiation: Ultraviolet Light-C (UV-C) led A. castellanii standard strain ATCC_30010 DNA damage and death 23 3.2 Manganese and iron superoxide dismutase (AcMn/Fe-SOD) as an indicator to confirm the ROS metabolism pathway in A. castellanii 24 3.2.1 AcMn/Fe-SOD expression was decreased under H2O2 treatment 24 3.2.2 AcMn/Fe-SOD slightly increased after 30 minutes of UV-C exposure 25 3.3 A. castellanii ribonucleotide reductases (AcRNRs) 26 3.3.1 AcRNRs conserved domains prediction 26 3.3.2 AcRNRs were increased under the H2O2 treatment for 10 mM 27 3.3.3 AcRNRs significantly increased UV-C exposure for 30 minutes 28 3.3.4 AcRNRs ferritin function assay 28 3.4 The potency of AcRNRs as an antioxidative enzyme 29 3.4.1 AcRNRs were highly sensitive to endogenous ROS 30 3.4.2 Gene silencing assay confirmed that AcRNRs contain the ability of involving ROS metabolic mechanism to against the DNA damage 31 3.5 Different stresses caused clinical isolate NCKH_D cell injury 32 3.5.1 NCKH_D was a poorly ROS-tolerant isolate comparing with ATCC_30010 32 3.5.2 ACA1_066210 and ACA1_066200 do not exist in NCKH_D 34 CHAPTER 4 35 DISCUSSION 35 CHAPTER 5 38 REFERENCES 38 TABLE 46 FIGURES 48 APPENDIX 62

    1. Ahmad, M.F., and Dealwis, C.G. (2013). The structural basis for the allosteric regulation of ribonucleotide reductase. Progress in molecular biology and translational science 117, 389-410.
    2. Akya, A., Pointon, A., and Thomas, C. (2009). Viability of Listeria monocytogenes in co-culture with Acanthamoeba spp. FEMS microbiology ecology 70, 20-29.
    3. Alves de Almeida, E., Celso Dias Bainy, A., Paula de Melo Loureiro, A., Regina Martinez, G., Miyamoto, S., Onuki, J., Fujita Barbosa, L., Carriao Machado Garcia, C., Manso Prado, F., Eliza Ronsein, G., et al. (2007). Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: antioxidants, lipid peroxidation and DNA damage. Comparative biochemistry and physiology Part A, Molecular & integrative physiology 146, 588-600.
    4. Ando, N., Brignole, E.J., Zimanyi, C.M., Funk, M.A., Yokoyama, K., Asturias, F.J., Stubbe, J., and Drennan, C.L. (2011). Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase. Proceedings of the National Academy of Sciences of the United States of America 108, 21046-21051.
    5. Aye, Y., Li, M., Long, M.J., and Weiss, R.S. (2015). Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011-2021.
    6. Barreiro, E., Sanchez, D., Galdiz, J.B., Hussain, S.N., Gea, J., and project, E.i.C. (2005). N-acetylcysteine increases manganese superoxide dismutase activity in septic rat diaphragms. European Respiratory Journal 26, 1032-1039.
    7. Bianchi, P., Kunduzova, O., Masini, E., Cambon, C., Bani, D., Raimondi, L., Seguelas, M.H., Nistri, S., Colucci, W., Leducq, N., et al. (2005). Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112, 3297-3305.
    8. Brack, C., Bechter-Thuring, E., and Labuhn, M. (1997). N-acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cellular and Molecular Life Sciences 53, 960-966.
    9. Brown, T.J., Cursons, R.T., and Keys, E.A. (1982). Amoebae from antarctic soil and water. Applied and environmental microbiology 44, 491-493.
    10. Clarke, B., Sinha, A., Parmar, D.N., and Sykakis, E. (2012). Advances in the diagnosis and treatment of Acanthamoeba keratitis. Journal of ophthalmology 2012, 484892.
    11. Clarke, D.W., Alizadeh, H., and Niederkorn, J.Y. (2006). Intracorneal instillation of latex beads induces macrophage-dependent protection against Acanthamoeba keratitis. Investigative ophthalmology & visual science 47, 4917-4925.
    12. Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17, 1195-1214.
    13. Corsaro, D., and Venditti, D. (2010). Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitology research 107, 233-238.
    14. De Jonckheere, J.F. (1991). Ecology of Acanthamoeba. Reviews of infectious diseases 13 Suppl 5, S385-387.
    15. Doetsch, P.W., Morey, N.J., Swanson, R.L., and Jinks-Robertson, S. (2001). Yeast base excision repair: interconnections and networks. Progress in nucleic acid research and molecular biology 68, 29-39.
    16. Driessens, N., Versteyhe, S., Ghaddhab, C., Burniat, A., De Deken, X., Van Sande, J., Dumont, J.E., Miot, F., and Corvilain, B. (2009). Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocrine-related cancer 16, 845-856.
    17. Elder, M.J., Kilvington, S., and Dart, J.K. (1994). A clinicopathologic study of in vitro sensitivity testing and Acanthamoeba keratitis. Investigative ophthalmology & visual science 35, 1059-1064.
    18. Eliasson, R., Fontecave, M., Jornvall, H., Krook, M., Pontis, E., and Reichard, P. (1990). The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proceedings of the National Academy of Sciences of the United States of America 87, 3314-3318.
    19. Eliasson, R., Pontis, E., Jordan, A., and Reichard, P. (1999). Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction. The Journal of biological chemistry 274, 7182-7189.
    20. Finkel, T. (2000). Redox-dependent signal transduction. FEBS letters 476, 52-54.
    21. Fuerst, P.A., Booton, G.C., and Crary, M. (2015). Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. The Journal of eukaryotic microbiology 62, 69-84.
    22. Garate, M., Cao, Z., Bateman, E., and Panjwani, N. (2004). Cloning and characterization of a novel mannose-binding protein of Acanthamoeba. The Journal of biological chemistry 279, 29849-29856.
    23. Gast, R.J. (2001). Development of an Acanthamoeba-specific reverse dot-blot and the discovery of a new ribotype. The Journal of eukaryotic microbiology 48, 609-615.
    24. Gast, R.J., Ledee, D.R., Fuerst, P.A., and Byers, T.J. (1996). Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. The Journal of eukaryotic microbiology 43, 498-504.
    25. Gullett, J., Mills, J., Hadley, K., Podemski, B., Pitts, L., and Gelber, R. (1979). Disseminated granulomatous Acanthamoeba infection presenting as an unusual skin lesion. The American journal of medicine67, 891-896.
    26. Gupta, D., Panda, G.S., and Bakhshi, S. (2008). Successful treatment of Acanthamoeba meningoencephalitis during induction therapy of childhood acute lymphoblastic leukemia. Pediatric blood & cancer50, 1292-1293.
    27. Hassett, D.J., Limbach, P.A., Hennigan, R.F., Klose, K.E., Hancock, R.E., Platt, M.D., and Hunt, D.F. (2003). Bacterial biofilms of importance to medicine and bioterrorism: proteomic techniques to identify novel vaccine components and drug targets. Expert opinion on biological therapy 3, 1201-1207.
    28. Hofer, A., Crona, M., Logan, D.T., and Sjoberg, B.M. (2012). DNA building blocks: keeping control of manufacture. Critical reviews in biochemistry and molecular biology 47, 50-63.
    29. Hofer, A., Crona, M., Logan, D.T., and Sjoberg, B.M. (2012). DNA building blocks: keeping control of manufacture. Critical reviews in biochemistry and molecular biology 47, 50-63.
    30. Hong, Y.C., Lee, W.M., Kong, H.H., Jeong, H.J., and Chung, D.I. (2004). Molecular cloning and characterization of a cDNA encoding a laminin-binding protein (AhLBP) from Acanthamoeba healyi. Experimental parasitology 106, 95-102.
    31. Horn, M., Fritsche, T.R., Gautom, R.K., Schleifer, K.H., and Wagner, M. (1999). Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental microbiology 1, 357-367.
    32. Huang, F.C., Liu, T.S., Li, S.C., Shih, M.H., Shin, J.W., and Lin, W.C. (2016). The effect of the disulfideisomerase domain containing protein in the defense against polyhexamethylene biguanide of highly tolerant Acanthamoeba at the trophozoite stage. International journal for parasitology Drugs and drug resistance 6, 251-257.
    33. Huang, F.C., Shih, M.H., Chang, K.F., Huang, J.M., Shin, J.W., and Lin, W.C. (2015). Characterizing clinical isolates of Acanthamoeba castellanii with high resistance to polyhexamethylene biguanide in Taiwan. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.
    34. Hurt, M., Neelam, S., Niederkorn, J., and Alizadeh, H. (2003). Pathogenic Acanthamoeba spp secrete a mannose-induced cytolytic protein that correlates with the ability to cause disease. Infection and immunity 71, 6243-6255.
    35. Jeong, H.J., Lee, S.J., Kim, J.H., Xuan, Y.H., Lee, K.H., Park, S.K., Choi, S.H., Chung, D.I., Kong, H.H., Ock, M.S., et al. (2007). Acanthamoeba: keratopathogenicity of isolates from domestic tap water in Korea. Experimental parasitology 117, 357-367.
    36. Jordan, A., Torrents, E., Sala, I., Hellman, U., Gibert, I., and Reichard, P. (1999). Ribonucleotide reduction in Pseudomonas species: simultaneous presence of active enzymes from different classes. Journal of bacteriology 181, 3974-3980.
    37. Kan, S.C., Yu, L.K., Chen, J.H., Hu, H.Y., and Hsu, W.H. (2011). Mutational analysis of splicing activities of ribonucleotide reductase alpha subunit protein from lytic bacteriophage P1201. Current microbiology 62, 1282-1286.
    38. Khan, N.A. (2006). Acanthamoeba: biology and increasing importance in human health. FEMS microbiology reviews 30, 564-595.
    39. Khan, N.A., and Paget, T.A. (2002). Molecular tools for speciation and epidemiological studies of Acanthamoeba. Current microbiology 44, 444-449.
    40. Khan, N.A., and Siddiqui, R. (2009). Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. International journal for parasitology 39, 1611-1616.
    41. Kim, J.Y., Na, B.K., Song, K.J., Park, M.H., Park, Y.K., and Kim, T.S. (2012). Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitology research 111, 1673-1682.
    42. King, D.S., and Reichard, P. (1995). Mass spectrometric determination of the radical scission site in the anaerobic ribonucleotide reductase of Escherichia coli. Biochemical and biophysical research communications 206, 731-735.
    43. Kirdis, E., Jonsson, I.M., Kubica, M., Potempa, J., Josefsson, E., Masalha, M., Foster, S.J., and Tarkowski, A. (2007). Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis. Microbial Pathogenesis 43, 179-188.
    44. Koc, A., Mathews, C.K., Wheeler, L.J., Gross, M.K., and Merrill, G.F. (2006). Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. The Journal of biological chemistry 281, 15058-15063.
    45. Kumar, M., Jain, R., Tripathi, K., Tandon, R., Gulati, A.K., Garg, A., and Gart, J. (2007). Acanthamoebae presenting as primary meningoencephalitis in AIDS. Indian journal of pathology & microbiology50, 928-930.
    46. Larsson, K.M., Logan, D.T., and Nordlund, P. (2010). Structural basis for adenosylcobalamin activation in AdoCbl-dependent ribonucleotide reductases. ACS chemical biology 5, 933-942.
    47. Li, M.L., Shih, M.H., Huang, F.C., Tseng, S.H., and Chen, C.C. (2012). Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea 31, 442-446.
    48. Licht, S., Gerfen, G.J., and Stubbe, J. (1996). Thiyl radicals in ribonucleotide reductases. Science 271, 477-481.
    49. Liu, X., Xue, L., and Yen, Y. (2008). Redox property of ribonucleotide reductase small subunit M2 and p53R2. Methods in molecular biology 477, 195-206.
    50. Lorenzo-Morales, J., Khan, N.A., and Walochnik, J. (2015). An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22, 10.
    51. Lorenzo-Morales, J., Martin-Navarro, C.M., Lopez-Arencibia, A., Arnalich-Montiel, F., Pinero, J.E., and Valladares, B. (2013). Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends in parasitology 29, 181-187.
    52. Lorenzo-Morales, J., Martin-Navarro, C.M., Lopez-Arencibia, A., Santana-Morales, M.A., Afonso-Lehmann, R.N., Maciver, S.K., Valladares, B., and Martinez-Carretero, E. (2010). Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrobial agents and chemotherapy 54, 5151-5155.
    53. Ma, P., Visvesvara, G.S., Martinez, A.J., Theodore, F.H., Daggett, P.M., and Sawyer, T.K. (1990). Naegleria and Acanthamoeba infections: review. Reviews of infectious diseases 12, 490-513.
    54. Marciano-Cabral, F., Han, K., Powell, E., Ferguson, T., and Cabral, G. (2003). Interaction of an Acanthamoeba human isolate harboring bacteria with murine peritoneal macrophages. The Journal of eukaryotic microbiology 50 Suppl, 516-519.
    55. Martinez, A.J., and Visvesvara, G.S. (1991). Laboratory diagnosis of pathogenic free-living amoebas: Naegleria, Acanthamoeba, and Leptomyxid. Clinics in laboratory medicine 11, 861-872.
    56. Martinez, A.J., and Visvesvara, G.S. (1997). Free-living, amphizoic and opportunistic amebas. Brain pathology 7, 583-598.
    57. McMillen, J., Nazario, M., and Jensen, T. (1974). Changes in transfer ribonucleic acids accompanying encystment in Acanthamoeba castellanii. Journal of bacteriology 117, 242-251.
    58. Miller, C.J., Rose, A.L., and Waite, T.D. (2013). Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions. Environmental Science & Technology 47, 829-835.
    59. Monje-Casas, F., Jurado, J., Prieto-Alamo, M.J., Holmgren, A., and Pueyo, C. (2001). Expression analysis of the nrdHIEF operon from Escherichia coli. Conditions that trigger the transcript level in vivo. The Journal of biological chemistry 276, 18031-18037.
    60. Niederkorn, J.Y., Alizadeh, H., Leher, H., and McCulley, J.P. (1999). The pathogenesis of Acanthamoeba keratitis. Microbes and infection 1, 437-443.
    61. Niida, H., Katsuno, Y., Sengoku, M., Shimada, M., Yukawa, M., Ikura, M., Ikura, T., Kohno, K., Shima, H., Suzuki, H., et al. (2010). Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes & Development 24, 333-338.
    62. Nordlund, P., and Reichard, P. (2006). Ribonucleotide reductases. Annual review of biochemistry 75, 681-706.
    63. Nuprasert, W., Putaporntip, C., Pariyakanok, L., and Jongwutiwes, S. (2010). Identification of a novel t17 genotype of Acanthamoeba from environmental isolates and t10 genotype causing keratitis in Thailand. Journal of clinical microbiology 48, 4636-4640.
    64. Oldenburg, C.E., Acharya, N.R., Tu, E.Y., Zegans, M.E., Mannis, M.J., Gaynor, B.D., Whitcher, J.P., Lietman, T.M., and Keenan, J.D. (2011). Practice patterns and opinions in the treatment of Acanthamoeba keratitis. Cornea 30, 1363-1368.
    65. Pussard, M. (1974). [Morphology of free-living amoebas. Importance and principles of study]. Annales de la Societe belge de medecine tropicale 54, 249-257.
    66. Qvarnstrom, Y., Nerad, T.A., and Visvesvara, G.S. (2013). Characterization of a new pathogenic Acanthamoeba Species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. The Journal of eukaryotic microbiology 60, 626-633.
    67. Roca, I., Ballana, E., Panosa, A., Torrents, E., and Gibert, I. (2008). Fumarate and nitrate reduction (FNR) dependent activation of the Escherichia coli anaerobic ribonucleotide reductase nrdDG promoter. International Microbiology 11, 49-56.
    68. Roca, I., Torrents, E., Sahlin, M., Gibert, I., and Sjoberg, B.M. (2008). NrdI essentiality for class Ib ribonucleotide reduction in Streptococcus pyogenes. Journal of bacteriology 190, 4849-4858.
    69. Rocha-Azevedo, B.D., Jamerson, M., Cabral, G.A., Silva-Filho, F.C., and Marciano-Cabral, F. (2009). Acanthamoeba interaction with extracellular matrix glycoproteins: biological and biochemical characterization and role in cytotoxicity and invasiveness. The Journal of eukaryotic microbiology 56, 270-278.
    70. Sahlin, M., Sjoberg, B.M., Backes, G., Loehr, T., and Sanders-Loehr, J. (1990). Activation of the iron-containing B2 protein of ribonucleotide reductase by hydrogen peroxide. Biochemical and biophysical research communications 167, 813-818.
    71. Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., Noguchi, N., and Niki, E. (2006). Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free radical research 40, 619-630.
    72. Sawyer, T.K., and Buchanan, L.R. (1971). Contamination of tissue sections of the American oyster by cysts of Acanthamoeba spp. Journal of invertebrate pathology 18, 300.
    73. Schuster, F.L., and Visvesvara, G.S. (2004). Amebae and ciliated protozoa as causal agents of waterborne zoonotic disease. Veterinary parasitology 126, 91-120.
    74. Schuster, F.L., and Visvesvara, G.S. (2004). Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International journal for parasitology 34, 1001-1027.
    75. Shao, J., Zhou, B., Di Bilio, A.J., Zhu, L., Wang, T., Qi, C., Shih, J., and Yen, Y. (2006). A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Molecular cancer therapeutics 5, 586-592.
    76. Sheng, W.H., Hung, C.C., Huang, H.H., Liang, S.Y., Cheng, Y.J., Ji, D.D., and Chang, S.C. (2009). First case of granulomatous amebic encephalitis caused by Acanthamoeba castellanii in Taiwan. The American journal of tropical medicine and hygiene 81, 277-279.
    77. Siddiqui, R., Iqbal, J., Maugueret, M.J., and Khan, N.A. (2012). The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii. Parasites & vectors 5, 112.
    78. Sjoberg, B.M., and Torrents, E. (2011). Shift in ribonucleotide reductase gene expression in Pseudomonas aeruginosa during infection. Infection and immunity 79, 2663-2669.
    79. Slupphaug, G., Kavli, B., and Krokan, H.E. (2003). The interacting pathways for prevention and repair of oxidative DNA damage. Mutation research 531, 231-251.
    80. Stothard, D.R., Schroeder-Diedrich, J.M., Awwad, M.H., Gast, R.J., Ledee, D.R., Rodriguez-Zaragoza, S., Dean, C.L., Fuerst, P.A., and Byers, T.J. (1998). The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. The Journal of eukaryotic microbiology 45, 45-54.
    81. Tamao, Y., and Blakley, R.L. (1973). Direct spectrophotometric observation of an intermediate formed from deoxyadenosylcobalamin in ribonucleotide reduction. Biochemistry 12, 24-34.
    82. Torrents, E., Poplawski, A., and Sjoberg, B.M. (2005). Two proteins mediate class II ribonucleotide reductase activity in Pseudomonas aeruginosa: expression and transcriptional analysis of the aerobic enzymes. The Journal of biological chemistry 280, 16571-16578.
    83. Tu, E.Y., Joslin, C.E., Sugar, J., Booton, G.C., Shoff, M.E., and Fuerst, P.A. (2008). The relative value of confocal microscopy and superficial corneal scrapings in the diagnosis of Acanthamoeba keratitis. Cornea 27, 764-772.
    84. Verani, J.R., Lorick, S.A., Yoder, J.S., Beach, M.J., Braden, C.R., Roberts, J.M., Conover, C.S., Chen, S., McConnell, K.A., Chang, D.C., et al. (2009). National outbreak of Acanthamoeba keratitis associated with use of a contact lens solution, United States. Emerging infectious diseases 15, 1236-1242.
    85. Visvesvara, G.S. (1991). Classification of Acanthamoeba. Reviews of infectious diseases 13 Suppl 5, S369-372.
    86. Visvesvara, G.S., Moura, H., and Schuster, F.L. (2007). Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS immunology and medical microbiology 50, 1-26.
    87. Wright, P., Warhurst, D., and Jones, B.R. (1985). Acanthamoeba keratitis successfully treated medically. The British journal of ophthalmology 69, 778-782.
    88. Xu, X., Page, J.L., Surtees, J.A., Liu, H., Lagedrost, S., Lu, Y., Bronson, R., Alani, E., Nikitin, A.Y., and Weiss, R.S. (2008). Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Research 68, 2652-2660.
    89. Zhu, H., Kumar, A., Ozkan, J., Bandara, R., Ding, A., Perera, I., Steinberg, P., Kumar, N., Lao, W., Griesser, S.S., et al. (2008). Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optometry and vision science: official publication of the American Academy of Optometry 85, 292-300.

    無法下載圖示 校內:2022-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE