| 研究生: |
李宗培 Li, Tsung-pei |
|---|---|
| 論文名稱: |
具多方向性奈米碳管結構合成之研究 Synthesis of Carbon nanotubes with Multiple-junction Structures |
| 指導教授: |
丁志明
Ting, Jyh-ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 奈米碳管 、化學氣相沉積 |
| 外文關鍵詞: | chemical vapor deposition, carbon nanotubes |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管具有優良的電子與機械性質,所以近年來有關其製程與各種應用皆被廣泛研究。而由於多接點奈米碳管的發現,使得其在微奈米相關的電子產業之應用日漸受到矚目。本實驗係採用化學氣相沉積法,以ferrocene為催化劑,甲烷與氫氣為反應氣體,矽晶圓為碳管成長基板,並用砂紙對矽晶圓表面做刮痕處理,然後控制氣體濃度比例及溫度參數合成多接點奈米碳管,探討各項參數對碳管成長的影響,以及研究多接點奈米碳管的成長機制。研究中發現,矽基板表面如果有較深的刮痕,將有助於多接點碳管的成長。在適當的氣體濃度比例與反應溫度條件下可合成出多方向成長特性良好的奈米碳管,而在甲烷濃度過高以及反應溫度較高的情形下碳管的多方向成長特性會被改變,形成雜亂的結構。另外,ferrocene高溫裂解釋放出的鐵原子與矽基板表面反應生成Fe3Si化合物,此化合物顆粒在反應溫度時容易變形的結構可能是成長多接點奈米碳管的重要因素。
Growth methods and applications of Carbon nanotubes (CNTs) are studied widely in recent years for their excellent electrical and mechanical properties. Because of the discovery of multiple-junction CNTs, they are of great importance in developing micro- and nano- devices. In this research, we used chemical vapor deposition method to synthesize multiple-junction CNTs and ferrocene as catalysts, methane and hydrogen as reaction gases, and silicon wafer as substrate. The wafer was scratched using sand papers. Then the multiple-junction carbon nanotubes were synthesized with various gas concentrations and temperatures. Finally the experimental parameters and growth mechanisms of multiple-junction CNTs were discussed.
When the surface of silicon substrate existed deeper scratches, multiple-junction CNTs were grown easily. Under proper conditions of gas concentrations and temperature, good multiple-junction property of CNTs could be synthesized. If the methane ratio and temperature were too high, disorderly CNTs will be formed. The thermal pyrolysis of ferrocene offered iron atoms to form Fe3Si compound with silicon substrate. The Fe3Si particles were of great importance in forming multiple-junction CNTs.
[1] S. Iijima, Nature 354, 56 (1991).
[2] C. Journet, P. Bernier, Appl. Phys. A 67 , 1 (1998).
[3] S. H. Tsai, C. W. Chao, C. L. Lee and H. C. Shih., Appl. Phys. Lett. 74, 3462(1999).
[4] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287(2000), 637.
[5] F. L. Darkrim, P. Malbrunot, and G.P. Tartaglia, International Journal of Hydrogen Storage, 27(2002), 193.
[6] J.M. Kim, W.B. Choi, N.S. Lee, and J.E. Jung, Diamond and Related Materials, 9(2000), 1184.
[7] T. Ono, H. Miyashita, and M. Esashi, Nanotechnology, 13(2002), 62.
[8] T. W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
[9] K. Tanigaki, S. Kuroshima, and T. W. Ebbesen, Thin Solid Films, 257(1995), 154.
[10] B. I. Yakobson and R. E. Smalley, American Scientist, 85(1997), 324.
[11] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33(1995),883.
[12] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
[13] H. Dai, Surface Science, 500(2002), 218.
[14] O. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science, 263(1994), 1744.
[15] S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, Science, 267(1995), 1334.
[16] H. Dai, E. W. Wong, and C. M. Lieber, Science, 272(1996), 523.
[17]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382(1996), 54.
[18]W. Primak and L. H. Fuchs, Phys. Review, 95(1954), 22.
[19] M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci. 8(1997), 341.
[20] B. T. Kelly, Physics of Graphite(Applied Science, London, 1981).
[21]B. I. Yakobson, Appl. Phys. Lett. 72(1998), 918.
[22] P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81(1998), 5346.
[23] M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev. B, 57(1998), R4277.
[24] M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett. 81(1998), 4656.
[25] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283(1999), 1513.
[26] J. Cumings and A. Zettl, Science, 289(2000), 602.
[27] M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Topics in Current Chemistry, 199(1998), 1.
[28] R. S. Ruoff and D. C. Lorents, Carbon, 33(1995), 925.
[29] S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84(2000), 4613.
[30] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B, 59(1999), R2514.
[31] J. Hone, M. C. Llaguno, N. M. Nemes, A. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Appl. Phys. Lett. 77(2000), 666.
[32] W. Yi, L. Lu, D-L Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B, 59(1999), R9015.
[33] M. A. Osman and D. Srivastava, Nanotechnology, 12(2001), 21.
[34] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer: in press.
[35] J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E. Fischer, Appl. Phys. A, 74(2002), 339.
[36] M. Endo and H. W. Kroto, Journal of Physical Chemistry, 96(1992),6941.
[37] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chemical Physics Letters, 304(1999), 277.
[38] R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon, Marcel Dekker, New York(1978), 83.
[39] R. T. K. Baker, M. A. Braber, P. S. Harries, F. S. Feates, and R. J. Waite, Journal of Catalysis, 26(1972), 51.
[40] R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64(1980), 464.
[41] A. Oberlin, M. Endo, and T. Koyama, Carbon, 14(1976), 133.
[42] A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32(1976), 335.
[43] T. Baird, J. R. Fryer, and B. Giant, Carbon, 12(1974), 591.
[44] Y. J. Yoon and H. K. Baik, Diamond and Related Materials, 10(2001), 1214.
[45] S. Iijima and T. Ichihashi, Nature, 363(1993), 603.
[46] T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209(1993), 83.
[47] S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R. Loufty, Carbon 31(1993), 685.
[48] P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S. Lefrant, R. Lee, and J. E. Fischer, Carbon, 36(1998), 675.
[49] S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature, 366(1993), 637.
[50] D. Zhou, S. Seraphin, and S. Wang, Applied Physics letters, 65(1994), 1593.
[51] Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chemical Physics letters, 236(1995), 419.
[52] Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, and T. Hayashi, Jpn. J. Appl. Phy., 33(1994), L-526.
[53] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem., 99(1995), 10694.
[54] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science, 273(1996), 483.
[55] M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, and J. W. Park, Diamond and Related Materials, 10(2001), 1235.
[56] N. Krishnankutty, C. Park, N. M. Rodriguez, and R. T. K. Baker, Catalysis Today, 37(1997), 295.
[57] Q. Liang, Q. Li, D. L. Chen, D. R. Zhou, B. L. Zhang, Z. L. Yu, Chemical Journal of Chinese Universities-Chinese, 21(2000), 623.
[58] N. M. Rodriguez, M. S. Kim, F. Tortin, I. Mochida, R. T. K. Baker, Applied Catalyst A, 148(1997), 265.
[59] C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No, Chemical Physics Letters, 327(2000), 277.
[60] K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, Applied Catalysis A, 199(2000), 245.
[61] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science, 274(1996), 1701.
[62] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys., 84(1998), 6023.
[63] J. Li, C. Papadopoulos, M. Xu, and M. Moskovits, Applied Physics Letters, 75(1999), 367.
[64] J. Li, C. Papadopoulos, J. Xu, Nature, 402(1999), 253.
[65] A. W. H. Mau, L. Dai, Journal of American Chemical Society, 121(1999), 10832.
[66] D. R. Lide, H. P. R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
[67] P. E. Nolan, M. J. Schabel, D. C. Lynch, Carbon, 33(1995), 79.
[68] 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
[69] Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, Diamond and Related Materials, 11(2002), 59.
[70] D. Zhou and S. Seraphin, Chemical Physics Letters, 238(1995), 286.
[71] B. Gan, J. Ahn, Q. Zhang, S.F. Yoon, Rusli, Q.-F. Huang, H. Yang, M.-B. Yu, and W.-Z. Li, Diamond and Related Materials, 9(2000), 897.
[72] B. Gan, J. Ahn, Q. Zhang, S.F. Yoon, J. Yu, Q.-F. Huang, K. Chew, V.A. Ligatchev, X.-B. Zhang, and W.-Z. Li, Chemical Physics Letters, 333(2001), 23.
[73] B. C. Satishkumar, P. J. Thomas, A. Govindaraj, and C. N. R. Rao, Applied Physics Letters, 77(2000), 2530.
[74] J.-M. Ting and C.-C Chang, Applied Physics Letters, 80(2002), 324.
[75] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Physical Review Letters, 76(1996), 971.
[76] B. Gan, J. Ahn, Q. Zhang, Q.-F. Huang, C. Kerlit, S.F. Yoon, Rusli, V.A. Ligachev, X.-B. Zhang, and W.-Z. Li, Materials Letters, 45(2000), 315.
[77] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, Science, 278(1997), 100.
[78] A. N. Andriotis, M. Menon, D. Srivastava, and L. Chernozatonskii, Applied Physics Letters, 79(2001), 266.
[79] A. S. Vedeneev, J. Li, C. Papadopoulos, A. Rakitin, A. J. Bennett, H. W. Chik, and J.M. Xu, IEEE International Electron Device Meeting, Wasington, DC, 1999.
[80] M. Menon and D. Srivastava, Physical Review Letters, 79(1997), 4453.
[81] 張淇芝, 基材備製對氣相成長碳纖維/管之影響, 國立成功大學材料科學及工程研究所碩士論文, 2001.
[82] 劉若梅, 一維奈米碳材合成與微結構之研究, 國立成功大學材料科學及工程研究所碩士論文, 2002.
[83] D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing, TMS Publications, p.430 (1994).
[84] G. G. Tibbetts, Journal of Crystal Growth, 66(1984), 632.
[85] M. A. Ermakova, D. Y. Ermakov, A. L. Chuvilin, and G. G. Kuvshinov, Journal of Catalysis, 201(2001), 183.
[86] 廖坤厚, 國立成功大學材料科學及工程研究所博士班, 待發表之論文。