簡易檢索 / 詳目顯示

研究生: 周琬蓉
Chou, Wan-Jung
論文名稱: 電漿有機改質奈米碳管高分子複合材料之特性與探討
Characteristic of carbon nanotube with plasma modified in the polymer matrix
指導教授: 陳志勇
CHEN, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 電漿技術奈米碳管奈米複合材料
外文關鍵詞: plasma, carbon nanotubes, nanocomposites
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為電子產業的蓬勃發展,不僅對產品的以輕、薄、短、小為開發目標,而且研發多功能性的材料取代單一功能的材料並且應用於其中,也是目前科技產業界致力的目標。因此開發功能性碳管/高分子複合材料,並且使其可應用於電子科技產業材一直為學界致力研究的目標。但是存在於有機高分子與無機碳管間凡德瓦力,會使得碳管彼此間容易糾結,無法有效分散的碳管便無法有效的改善複合材料的特性。因此,本研究主要利用電漿法改質奈米碳管,使其表面官能基化,改善其於高分子基材間的分散行為。
    本研究的第一部分先利用電將改質技術,將奈米碳管表面接枝上馬來酸酐(mCNT),並製備一系列的奈米碳管/聚醯亞胺奈米複合材料(mCNT/PI)。在電子顯微鏡觀察下發現,改質過的碳管於聚醯亞胺中的分散現象比未改質的佳。添加改質過的奈米碳管在聚醯亞胺中的導電性質,會有明顯的效果,在添加量為0.5 wt %時可獲得10-4 S/cm的導電率,比未改質的奈米碳管高出102。mCNT/PI整體的機械性質(包括:楊式膜數、抗拉強度、延展率)皆可達到50 %以上的補強效果;熱性質方面(熱裂解溫度、活化能)也能獲得不錯的安定性,提升效果達30 %。
    為了提高CNT/Polymer於電子產業上的應用價值,提高CNT合材料整體導電率為此部份研究要點。因此本文在第二部分探討不同長度的碳管在變化添加比例的情況下,加以控制複合材料的導電率。先利用酸化程序將碳管變短變薄並加以電漿技術改質短碳管表面,接著將第一部分使用的長碳管,以不同比例加以混合(0.0、20、50、80、100 %),製備出一系列的碳管/聚甲基丙烯酸甲酯(CNT/PMMA)奈米複合材料。在電子顯微鏡的觀察下証明碳管於PMMA中的分散現象有明顯改善,並進行一系列的導電特性的探討。結果發現,當短碳短的添加量占總碳管含量20%,此時的系統(CNT20)可得到最佳的導電率加成效果,且此時的導電率可達10-2 S/cm,此導電率值已經達導電用ITO玻璃的阻值標準。再利用滲透定理計算碳管分散相關參數,獲得CNT20系統擁有最小的滲透濃度ρc(percolation threshold)且碳管於系統中的分散最趨近3D網絡狀的分佈,同時利用熱擾動電子穿隧效應定理(Thermal fluctuation-induced tunnelling model),更進一步探討導電率與溫度的對應關係,結果發現CNT20系統中的碳管因為擁有最佳網絡分布密度的關係,電子於其中的傳遞效果最佳,更容易導通且受溫度影響最小,因此比mCNT系統擁有更廣的工作範圍(CNT:125-369K ;CNT20:120-388K)。

    A series of polyimide-based nanocomposites containing modified multi-walled carbon nanotubes (mCNT) has been prepared. The multi-walled carbon nanotubes (CNT) were modified by plasma treatment and maleic anhydride was grafted onto them. After plasma modification, the mCNT showed good dispersal in the polyimide matrix and imparted excellent mechanical properties. The mechanical properties, including Young’s modulus, tensile strength, and elongation, were improved with increasing added mCNT content in the range 0.01 to 0.5 wt%. DMA measurements clearly showed that the glass transfer transition temperature (Tg) increased with increasing mCNT content. In addition, the electrical conductivities of the mCNT/polyimide nanocomposites exceeded 104 S/cm. These results indicate that the mCNTs incorporated into the polyimide matrix not only provided a path for electron transfer, but also effectively reinforced the polyimide matrix.
    On the other section, after the acid and plasma treatment, CNT were decreased in length and expressed good dispersion behaviour in a polymer matrix. Embedding two different lengths of CNT into a PMMA (Polymethyl methacrylate) matrix, a series of acid-plasma-modified carbon nanotube (apCNT)/PMMA nanocomposites with different percentage contents of CNTs were prepared. The electrical conductivity of the apCNT/PMMA nanocomposites was controlled by adding varying percentages of mCNTs to the mixture. When the content of apCNTs in the apCNT/mCNT mixture was 20%, the conductivity of the apCNT/mCNT/PMMA nanocomposites was greatest. Furthermore, after fitting the experimental data with the fluctuation-induced tunnelling model, we obtain a better work temperature, range from 120 K to 388 K.

    摘要 I Abstract III 誌謝 IV 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2-1. 高分子複合材料 3 2-2. 奈米碳管 4 2-3-1. 化學法17-22 6 2-3-2. 物理法 10 2-4. 奈米碳管/聚醯亞胺奈米複合材料 11 2-5. 研究動機與目的 12 第三章 實驗內容 13 3-1. 實驗藥品 13 3-2. 實驗儀器 13 3-3. 實驗步驟 14 3-3-1. 有機化改質奈米碳管 14 3-3-1. 奈米碳管/聚醯亞胺複合材料(CNT/PI) 15 3-3-2. 奈米碳管/聚甲基丙烯酸甲酯乳液複合材料(CNT/PMMA) 17 3-4. 儀器分析方式 17 第四章 實驗結果與特性分析 20 4-1. 有機化改質之奈米碳管 20 4-2. 改質奈米碳管對高分子材的影響評估 27 4-2-1. 電性質的評估 27 4-2-2. 機械性質的評估 28 4-2-3. 熱性質的評估 31 4-2-4. 綜合特性結論 32 4-3. 奈米碳管/聚醯亞胺PI複合材料 33 4-3-1. CNT-MA/PI高分子導電複合材料製備 34 4-3-1. 奈米碳管/PI複合材料電性質之測試 36 4-3-2. 奈米碳管/PI複合材料機械性質之測試 40 4-3-3. 奈米碳管/PI複合材料熱機械性質之測試 44 4-3-4. 奈米碳管/PI複合材料熱性質之測試 47 4-4. 奈米碳管/聚甲基丙烯酸甲酯PMMA複合材料 58 4-4-1. 奈米碳管/PMMA複合材料電性質之測試 60 4-4-2. 奈米碳管/PMMA複合材料電性質之測試 64 第五章 結論 73 參考文獻 75 發表著作 80 自述 81

    1 Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison, Composites Science and Technology. 63,1637-1646 (2003).
    2 C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. Smith, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, and T. L. S. Clair, Chemical Physics Letters. 364,303-308 (2002).
    3 A. P. Yu, H. Hui, E. Bekyarova, M. E. Itkis, J. Gao, B. Zhao, and R. C. Haddon, Composites Science and Technology. 66,1190-1197 (2006).
    4 E. P. Giannelis, Advanced Materials. 8,29-& (1996).
    5 Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, Journal of Applied Polymer Science. 49,1259-1264 (1993).
    6 R. Krishnamoorti, R. A. Vaia, and E. P. Giannelis, Chemistry of Materials. 8,1728-1734 (1996).
    7 T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chemistry of Materials. 7,2144-2150 (1995).
    8 T. J. Pinnavaia, T. Lan, P. D. Kaviratna, Z. Wang, and H. H. Shi, Abstracts of Papers of the American Chemical Society. 210,61-Pmse (1995).
    9 M. Alexandre and P. Dubois, Materials Science & Engineering R-Reports. 28,1-63 (2000).
    10 M. Biswas and S. S. Ray, New Polymerization Techniques and Synthetic Methodologies. 155,167-221 (2001).
    11 E. P. Giannelis, R. Krishnamoorti, and E. Manias, Polymers in Confined Environments. 138,107-147 (1999).
    12 P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Applied Clay Science. 15,11-29 (1999).
    13 S. S. Ray and M. Okamoto, Progress in Polymer Science. 28,1539-1641 (2003).
    14 R. Andrews and M. C. Weisenberger, Current Opinion in Solid State & Materials Science. 8,31-37 (2004).
    15 C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules. 35,8825-8830 (2002).
    16 P. Potschke, T. D. Fornes, and D. R. Paul, Polymer. 43,3247-3255 (2002).
    17 J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science. 282,95-98 (1998).
    18 J. Chen, A. M. Rao, S. Lyuksyutov, M. E. Itkis, M. A. Hamon, H. Hu, R. W. Cohn, P. C. Eklund, D. T. Colbert, R. E. Smalley, and R. C. Haddon, The Journal of Physical Chemistry B. 105,2525-2528 (2001).
    19 M. A. Hamon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Advanced Materials. 11,834-840 (1999).
    20 M. Sano, A. Kamino, J. Okamura, and S. Shinkai, Science. 293,1299-1301 (2001).
    21 K. A. Shiral Fernando, Y. Lin, and Y.-P. Sun, Langmuir. 20,4777-4778 (2004).
    22 J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du, The Journal of Physical Chemistry B. 107,3712-3718 (2003).
    23 J. L. Bahr and J. M. Tour, Journal of Materials Chemistry. 12,1952-1958 (2002).
    24 A. Hirsch, Angewandte Chemie International Edition. 41,1853-1859 (2002).
    25 C. A. Dyke and J. M. Tour, Chemistry - A European Journal. 10,812-817 (2004).
    26 U. Wille, Journal of the American Chemical Society. 124,14-15 (2001).
    27 V. N. Khabashesku, W. E. Billups, and J. L. Margrave, Accounts of Chemical Research. 35,1087-1095 (2002).
    28 J. L. Bahr, J. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley, and J. M. Tour, Journal of the American Chemical Society. 123,6536-6542 (2001).
    29 K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, and K. Kern, Advanced Materials. 15,1515-1518 (2003).
    30 P. R. Marcoux, P. Hapiot, P. Batail, and J. Pinson, New Journal of Chemistry. 28,302-307 (2004).
    31 J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D. L. Carroll, S. M. C. Vieira, P. R. Birkett, and C. A. Rego, Applied Physics Letters. 81,2647-2649 (2002).
    32 A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Composites Science and Technology. 62,1993-1998 (2002).
    33 X. W. Jiang, Y. Z. Bin, and M. Matsuo, Polymer. 46,7418-7424 (2005).
    34 J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer. 44,5893-5899 (2003).
    35 F. Cardona, G. A. George, D. J. T. Hill, F. Rasoul, and J. Maeji, Macromolecules. 35,355-364 (2001).
    36 N. M. El-Sawy, Polymer International. 49,533-538 (2000).
    37 C. H. Tseng, C. C. Wang, and C. Y. Chen, Nanotechnology. 17,5602-5612 (2006).
    38 C. H. Tseng, C. C. Wang, and C. Y. Chen. Modification of polypropylene fibers by plasma and preparation of hybrid luminescent and rodlike CdS nanocrystals/polypropylene fibers. Amer Scientific Publishers, 2006. pp. 3897-3903.
    39 C. H. Tseng, C. C. Wang, and C. Y. Chen, Journal of Physical Chemistry B. 110,4020-4029 (2006).
    40 A. Yu, H. Hu, E. Bekyarova, M. E. Itkis, J. Gao, B. Zhao, and R. C. Haddon, Composites Science and Technology. 66,1187-1194 (2006).
    41 S. M. Yuen, C. C. M. Ma, Y. Y. Lin, and H. C. Kuan, Composites Science and Technology. 67,2564-2573 (2007).
    42 B. K. Zhu, S. H. Xie, Z. K. Xu, and Y. Y. Xu, Composites Science and Technology. 66,548-554 (2006).
    43 V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Carbon. 46,833-840 (2008).
    44 Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, and J. L. Margrave, Nano Letters. 2,1009-1013 (2002).
    45 H. Hu, A. Yu, E. Kim, B. Zhao, M. E. Itkis, E. Bekyarova, and R. C. Haddon, The Journal of Physical Chemistry B. 109,11520-11524 (2005).
    46 H. Hu, B. Zhao, M. E. Itkis, and R. C. Haddon, Journal of Physical Chemistry B. 107,13838-13842 (2003).
    47 N. I. Kovtyukhova, T. E. Mallouk, L. Pan, and E. C. Dickey, Journal of the American Chemical Society. 125,9761-9769 (2003).
    48 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science. 280,1253-1256 (1998).
    49 K. J. Ziegler, Z. Gu, H. Peng, E. L. Flor, R. H. Hauge, and R. E. Smalley, Journal of the American Chemical Society. 127,1541-1547 (2005).
    50 J. S. Hsu, W. J. Chang, C. Y. Hu, and H. C. Li, Japanese Journal of Applied Physics. 48 (2009).
    51 W. Lee, J. S. Gau, and H. Y. Chen, Applied Physics B-Lasers and Optics. 81,171-175 (2005).
    52 W. Lee, C. Y. Wang, and Y. C. Shih, Applied Physics Letters. 85,513-515 (2004).
    53 R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, Carbon. 39,1681-1687 (2001).
    54 G.-W. Lee, J. Kim, J. Yoon, J.-S. Bae, B. C. Shin, I. S. Kim, W. Oh, and M. Ree, Thin Solid Films. 516,5781-5784 (2008).
    55 H. Yusa and T. Watanuki, Carbon. 43,519-523 (2005).
    56 M. Li, M. Boggs, T. P. Beebe, and C. P. Huang, Carbon. 46,466-475 (2008).
    57 G. Zhang, S. Sun, D. Yang, J.-P. Dodelet, and E. Sacher, Carbon. 46,196-205 (2008).
    58 X. He, F. Zhang, R. Wang, and W. Liu, Carbon. 45,2559-2563 (2007).
    59 J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer. 40,5967-5971 (1999).
    60 Kurkijar.J, Physical Review B. 9,770-774 (1974).
    61 G. E. Pike and C. H. Seager, Physical Review B. 10,1421-1434 (1974).
    62 D. Stauffer, Introduction to the percolation theory.(Francis and Taylor,London,1991.)
    63 X. Liang, L. Ling, C. Lu, and L. Liu, Materials Letters. 43,144-147 (2000).
    64 R. D. Sherman, L. M. Middleman, and S. M. Jacobs, Polymer Engineering and Science. 23,36-46 (1983).
    65 T. Agag, T. Koga, and T. Takeichi, Polymer. 42,3399-3408 (2001).
    66 J. B. Bai and A. Allaoui, Composites Part a-Applied Science and Manufacturing. 34,689-694 (2003).
    67 A. K.-T. Lau and D. Hui, Composites Part B: Engineering. 33,263-277 (2002).
    68 O. Lourie and H. D. Wagner, Composites Science and Technology. 59,975-977 (1999).
    69 E. T. Thostenson, Z. Ren, and T.-W. Chou, Composites Science and Technology. 61,1899-1912 (2001).
    70 N. K. Dutta and D. K. Tripathy, Kautschuk Gummi Kunststoffe. 42,665-671 (1989).
    71 M. Kluppel, Filler-Reinforced Elastomers Scanning Force Microscopy. 164,1-86 (2003).
    72 C. Bower, A. Kleinhammes, Y. Wu, and O. Zhou, Chemical Physics Letters. 288,481-486 (1998).
    73 M. T. Martinez, M. A. Callejas, A. M. Benito, M. Cochet, T. Seeger, A. Anson, J. Schreiber, C. Gordon, C. Marhic, O. Chauvet, J. L. G. Fierro, and W. K. Maser, Carbon. 41,2247-2256 (2003).
    74 I. D. Rosca, F. Watari, M. Uo, and T. Akasaka, Carbon. 43,3124-3131 (2005).
    75 J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du, Journal of Physical Chemistry B. 107,3712-3718 (2003).
    76 W.-J. Chou, C.-C. Wang, and C.-Y. Chen, Composites Science and Technology. 68,2208-2213 (2008).
    77 C.-H. Tseng, C.-C. Wang, and C.-Y. Chen, Journal of Nanoscience and Nanotechnology. 6,3897-3903 (2006).
    78 V. K. S. Shante and Kirkpatr.S, Advances in Physics. 20,325-& (1971).
    79 B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W. J. Blau, Journal of Applied Physics. 92,4024-4030 (2002).
    80 A. Dufresne, M. Paillet, J. L. Putaux, R. Canet, F. Carmona, P. Delhaes, and S. Cui, Journal of Materials Science. 37,3915-3923 (2002).
    81 B. Safadi, R. Andrews, and E. A. Grulke, Journal of Applied Polymer Science. 84,2660-2669 (2002).
    82 C. Stephan, T. P. Nguyen, B. Lahr, W. Blau, S. Lefrant, and O. Chauvet, Journal of Materials Research. 17,396-400 (2002).
    83 P. C. P. Watts, W. K. Hsu, G. Z. Chen, D. J. Fray, H. W. Kroto, and D. R. M. Walton, Journal of Materials Chemistry. 11,2482-2488 (2001).
    84 M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. Transport and Thermal Properties. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996. pp. 556-615.
    85 M. S. Fuhrer and M. Hadis. Single-Walled Carbon Nanotubes for Nanoelectronics. Advanced Semiconductor and Organic Nano-Techniques. San Diego: Academic Press, 2003. pp. 293-343.
    86 J.-P. Issi, J.-C. Charlier, T. Kazuyoshi, Y. Tokio, and F. Kenichi. Electrical Transport Properties in Carbon Nanotubes. The Science and Technology of Carbon Nanotubes. Oxford: Elsevier Science Ltd, 1999. pp. 107-127.
    87 T. Jungwirth, B. L. Gallagher, J. Wunderlich, and E. R. Weber. Chapter 4 Transport Properties of Ferromagnetic Semiconductors. Semiconductors and Semimetals, vol. Volume 82: Elsevier, 2008. pp. 135-205.
    88 S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, Macromolecules. 36,5187-5194 (2003).
    89 Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon. 43,23-30 (2005).
    90 A. W. Musumeci, G. G. Silva, J.-W. Liu, W. N. Martens, and E. R. Waclawik, Polymer. 48,1667-1678 (2007).
    91 P. Sheng, E. K. Sichel, and J. I. Gittleman, Physical Review Letters. 40,1197-1200 (1978).
    92 S. L. Shi and J. Liang, Journal of Applied Physics. 101,- (2007).
    93 M. Mehbod, P. Wyder, R. Deltour, C. Pierre, and G. Geuskens, Physical Review B. 36,7627 (1987).

    下載圖示 校內:2011-02-08公開
    校外:2011-02-08公開
    QR CODE