簡易檢索 / 詳目顯示

研究生: 蔡秉樺
Tsai, Ping-Hua
論文名稱: 金屬氧化物電荷傳輸層製作量子點電致發光二極體之研究
Investigation of Electroluminescent Quantum Dot Light-Emitting Diodes with Metal-Oxide Carrier Transport Layers
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 66
中文關鍵詞: 金屬氧化物電致發光量子點量子點發光二極體
外文關鍵詞: metal oxides, electroluminescence, quantum dots, quantum dot light-emitting diodes
相關次數: 點閱:133下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中主要使用無機金屬氧化物作為多層結構中的電荷傳輸層並與無機硒化鎘/硫化硒-核/殼型量子點製作反置型量子點電致發光二極體。該元件基本架構為氧化銦錫(ITO)/氧化鋅(ZnO)/緩衝層/量子點(QDs)/4,4'-二(9-咔唑)聯苯(CBP)/三氧化鉬(MoO3)/金(Au)。本實驗中所有元件皆製作於玻璃基板上,氧化銦錫當作陰極,並運用不同製程方式製作氧化鋅作為電子傳輸層,而結構中緩衝層主要利用碳酸銫來製作,紅光發光層材料則為溶膠狀量子點,熱蒸鍍有機材料CBP作為電洞傳輸層,電洞注入層則為三氧化鉬,最後鍍上功函數較高的金來當作陽極。
    傳統量子點發光二極體結構大多以有機聚合物作為電洞傳輸層材料,製作於陽極與量子點之間,由於溶膠狀量子點多分散於有機溶劑(甲苯、氯仿)之中,而有機溶劑大多會對其他薄膜造成破壞,為使得電洞傳輸介面品質不受到影響,其材料的選擇性受到限制,導致不同材料中電洞之位能障礙成為主要影響元件效率的關鍵,因此我們採用了新式的反置結構來製作量子點發光二極體。以穩定的金屬氧化物-氧化鋅作為量子點薄膜下方之電子傳輸層,如此一來便可使用與量子點之間電洞能障較小的有機材料CBP來當作電洞傳輸層,並搭配強鹼型金屬化合物作為緩衝層來改善元件效率,使元件增加了約135倍的亮度而效率也提升了將近38倍。接著我們運用溶膠凝膠法、濺鍍法、氧化鋅奈米粒子三種不同方式製作電子傳輸層,經量測比較後發現,使用溶膠凝膠法製作非結晶氧鋅薄膜作為電子傳輸層可達到最佳元件特性。有鑑於此,我們對溶膠凝膠法製作之氧化鋅薄膜施以不同回火溫度,於回火溫度200 ℃時元件達到最大亮度195 cd/m2以及最佳電流效率0.039 cd/A。
    我們成功地製作出像素均勻的紅光量子點電致發光二極體,結構中運用簡易、低成本溶膠凝膠法製作氧化鋅薄膜作為電子傳輸層和高色彩純度的發光材料量子點。相較於有機聚合物作為電荷傳輸層的傳統結構,起始驅動電壓由原本的6.5伏特下降了13.85%至5.6 V,而最大電流效率也從原本的0.029 cd/A上升34.48 %到達將近0.04 cd/A。

    In this thesis, the inorganic metal oxides as carrier transport layers in multilayer structure and the inorganic CdSe/ZnS core/shell type quantum dots (QDs) were mainly employed to fabricate the inverted electroluminescent quantum dot light-emitting diodes (QD-LEDs). The concept structure was indium tin oxide (ITO)/zinc oxide (ZnO)/buffer layers/QDs/4,4'-Bis(carbazol-9-yl)biphenyl (CBP)/ molybbdenum(VI) oxide (MoO3)/gold (Au). All of the devices were fabricated on the transparent glass substrates. ITO was cathode, and ZnO was used as electron transport layers (ETLs). The cesium carbonate (Cs2CO3) was buffer layers while QDs were red light-emitting materials, and CBP was hole transport layer (HTL). Moreover, MoO3, and Au with high work function were used as hole injection layer (HIL), and anode, respectively.
    Traditional structure have made use of the polymer materials to be hole transport layer inserted between QDs and anode. Colloidal quantum dots were dispersed in organic solvent, such as toluene or chloroform. Thus, the material selection of hole transport layer must be limited to prevent the damage of QDs and polymer, leading to the difficult confronting of hole barrier. As a result, a novel inverted structure was used to fabricate our QD-LEDs. Air-stable and inorganic metal oxides (ZnO) were employed to be the tolerant ETLs against the QD solution. Therefore, we chose the CBP material with lower highest occupied molecular orbital (HOMO) for diminishing the hole barrier height between QDs and HTLs. Due to the cooperation of ZnO and alkali metal compounds in QD-LEDs, the luminance intensity and current efficiency would be significantly increased by approximately 135 and 38 times, respectively. There were three different fabrication methods, such as sol-gel method, sputtering, and ZnO nanoparticles to be used to deposit ETLs. By X-ray diffraction (XRD) spectrum, the amorphous crystallinity could be detected in the ZnO thin film deposited by sol-gel method and QD-LEDs using this deposition method showed the best performance. Moreover, by means of treating sol-gel-derived ZnO layers with different annealing temperature, we found that the maximum luminance and current efficiency of the device could reach levels of 195 cd/m2 and 0.039 cd/A, respectively, at 200 ℃ treatment.
    Eventually, we have successfully fabricated the red light electroluminescent QD-LEDs with uniform pixels, and the device especially contain the easy and low-cost sol-gel-derived ZnO and QDs with high color purity. From the comparison with inverted and conventional polymer-based structure, the turn on voltage for inverted structure with respect to normal structure device decreased from 6.5 to 5.6 V by 13.85 % and the maximum efficiency raised from 0.029 up to approximately 0.04 cd/A by 34.48 %.

    Content Abstract (in Chinese) I Abstract (in English) III Acknowledgement V Content VI Table captions VIII Figure captions IX Chapter 1 Introduction 1 1.1 Colloidal quantum dots 1 1.2 Colloidal quantum dots for light-emitting device 2 1.3 Properties of metal oxides 3 1.4 Motivation 4 References-Chapter 1 5 Chapter 2 Theory of quantum dot light-emitting diodes 8 2.1 The characteristics of organic materials and quantum dots 8 2.1.1 Fluorescence and Phosphorescence 8 2.1.2 Quantum dots as exciton acceptors 11 2.2 Mechanisms of quantum dot light-emitting diodes 13 2.2.1 Energy transfer vs. charge injection 13 2.2.2 Classification of four QD-LEDs types 14 2.3 Zinc oxide (ZnO) sol-gel method 17 References-Chapter 2 19 Chapter 3 Experimental processes and measurements 24 3.1 Materials in the experiments 24 3.2 Substrate treatment 28 3.3 Fabrication process 29 3.4 Measurement and characteristics analysis 32 References-Chapter 3 35 Chapter 4 Experimental results and discussions 36 4.1 The effect of cesium carbonate (Cs2CO3) on QD-LEDs 36 4.2 Comparison of different ZnO preparations in QD-LEDs 42 4.2.1 Analysis of ZnO films (amorphous and crystalline) 42 4.2.2 Electronic characteristics 45 4.3 Comparison of ZnO with different annealing temperature 51 4.3.1 Analysis of ZnO films 51 4.3.2 Electronic characteristics 55 4.3.3 Comparison of inverted and traditional structure 59 References-Chapter 4 61 Chapter 5 Conclusion and future work 65 5.1 Conclusion 65 5.2 Future work 66 Table captions Table 4-1: The turn on voltage at 100 mA/cm2, luminance at 8 V, maximum current efficiency, and wavelength of maximum EL peak at 3 mA of all devices 41 Table 4-2: The turn on voltage at 100 mA/cm2, maximum luminance, maximum current efficiency, and wavelength of maximum EL peak at 3 mA of all devices 50 Table 4-3: The turn on voltage at 100 mA/cm2, maximum luminance, maximum current efficiency, and wavelength of maximum EL peak at 3 mA of all devices 58 Table 4-4: Comparison of the turn on voltage at 100 mA/cm2, maximum luminance, maximum current efficiency, and wavelength of maximum EL peak at 3 mA 60 Figure captions Fig. 1-1 Market research of QD-based products 2 Fig. 2-1 Process of radiative energy transfer 9 Fig. 2-2 Process of Förster energy transfer 10 Fig. 2-3 Process of Dexter energy transfer 10 Fig. 2-4 The schematic diagram of excited QD states 11 Fig. 2-5 Schematic diagram illustrates two proposed mechanism of QD-LED operation. (a) Schematic structure, (b) energy band diagram of general QD-LED 14 Fig. 2-6 Progression of QD-LED performance over time in terms of peak EQE and the inset are four architecture types 14 Fig. 3-1 Absorption and PL spectra of the QDs film 26 Fig. 3-2 Photolithography process for the patterned ITO-glass substrates 28 Fig. 3 3 Cleaning process for the patterned ITO-glass substrates 28 Fig. 3 4 The flow chart of the procedure for preparing ZnO layers 29 Fig. 3 5 Photographs of the thermal vacuum evaporation system 31 Fig. 3 6 Chamber of the thermal evaporation system 31 Fig. 3 7 Different patterns for (a) ITO, (b) buffer/ organic layer, (c) Gold (Au) 32 Fig. 3 8 Measurement systems of optical and electrical characteristics 33 Fig. 3 9 Agilent 8453 UV-Vis spectrophotometer 34 Fig. 3 10 Measurement system of PL spectra for sample solutions 34 Fig. 4-1 (a) Scheme of QD-LEDs with buffer layers, (b) energy band diagram 37 Fig. 4-2 Current density-voltage characteristics 38 Fig. 4-3 (a) Luminance-voltage, (b) current efficiency-current density curves 40 Fig. 4-4 EL spectra of the five devices biased at 3 mA 41 Fig. 4-5 Scheme of QD-LEDs with different preparations of ZnO 43 Fig. 4-6 XRD spectra of sol-gel-derived ZnO films 43 Fig. 4-7 AFM and SEM of (a) ZnO (non-crystalline), (b) ZnO (crystalline) 44 Fig. 4-8 Current density-voltage characteristics 45 Fig. 4-9 (a) Luminance-voltage, (b) current efficiency-current density curves 47 Fig. 4-10 EL spectra of (a) all devices, (b) normalization of device E and F, inset is the PL of organic CBP 49 Fig. 4-11 TEM of ZnO nanoparticles (a) fresh, (b) store for days 50 Fig. 4-12 Scheme of QD-LEDs with different annealing temperature of ZnO 51 Fig. 4-13 Spectra of (a) absorbance, (b) transmittance (normalized to glass) 53 Fig. 4-14 XRD spectra of different annealing temperature ZnO 54 Fig. 4-15 AFM images of different annealing temperature ZnO 54 Fig. 4-16 Current density-voltage characteristics 55 Fig. 4-17 (a) Luminance-voltage, (b) current efficiency-current density curves 57 Fig. 4-18 EL spectra of the devices with ZnO annealed from 100 ℃ to 400 ℃ 58 Fig. 4-19 Schematic and energy band diagrams of (a) inverted, (b) conventional structure 60

    References-Chapter 1
    [1] A. H. Mueller, M. a Petruska, M. Achermann, D. J. Werder, E. a Akhadov, D. D. Koleske, M. a Hoffbauer, and V. I. Klimov, “Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers.,” Nano letters, vol. 5, pp. 1039, Jun. 2005.
    [2] J. W. Stouwdam and R. a. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” Journal of Materials Chemistry, vol. 18, p. 1889, 2008.
    [3] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum 2009,” Nano letters, vol. 9, p. 2532, 2009.
    [4] A. G. Pattantyus-abraham, Ќ. I. J. Kramer, Ќ. A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, and E. H. Sargent, “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells,” ACS nano, vol. 4, pp. 3374, 2010.
    [5] B. N. Pal, I. Robel, A. Mohite, R. Laocharoensuk, D. J. Werder, and V. I. Klimov, “High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots,” Advanced Functional Materials, vol. 22, pp. 1741, Apr. 2012.
    [6] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast quantum dot photodetectors.,” Nature, vol. 442, pp. 180, Jul. 2006.
    [7] A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. J. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chemical Science, vol. 3, p. 2028, 2012.
    [8] W. Koh, S. R. Saudari, A. T. Fafarman, C. R. Kagan, and C. B. Murray, “Thiocyanate-Capped PbS Nanocubes : Ambipolar Transport Enables,” Chemical Science, vol, 11, pp. 4764, 2011.
    [9] V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos. “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, ” Nature, vol. 370, pp. 354-357, 1994.
    [10] Oliver, J. “Quantum dots: global market growth and future commercial prospects,” BCC Research paper NAN027C, 2011.
    [11] www.displaysearch.com.
    [12] H.-M. Kim, J.-H. Youn, G.-J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” Journal of Materials Chemistry C, vol. 1, p. 1567, 2013.
    [13] N. Tokmoldin, N. Griffiths, D. D. C. Bradley, and S. a. Haque, “A Hybrid Inorganic-Organic Semiconductor Light-Emitting Diode Using ZrO 2 as an Electron-Injection Layer,” Advanced Materials, vol. 21, pp. 3475, 2009.
    [14] V. Wood, M. J. Panzer, J.-M. Caruge, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture.,” Nano letters, vol. 10, pp. 24, 2010.
    [15] M. Vasilopoulou, L. C. Palilis, D. G. Georgiadou, S. Kennou, I. Kostis, D. Davazoglou, and P. Argitis, “Barrierless hole injection through sub-bandgap occupied states in organic light emitting diodes using substoichiometric MoOx anode interfacial layer,” Applied Physics Letters, vol. 100, p. 013311, 2012.
    [16] K. Cho, E. K. Lee, W. Joo, E. Jang, T. Kim, S. J. Lee, S. Kwon, J. Y. Han, B. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” NATURE PHOTONICS, vol. 3, pp. 2, 2009.
    [17] M. N. Kamalasanan and S. Chandra, “Sol-gel synthesis of ZnO thin films,” Thin Solid Films, vol. 288, pp. 112–115, 1996.
    [18] P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee, and C. C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol–gel technology,” Journal of the European Ceramic Society, vol. 27, pp. 3815, 2007.
    [19] Y.-S. Kim, W.-P. Tai, and S.-J. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process,” Thin Solid Films, vol. 491, pp. 153, 2005.
    [20] H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, “Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes,” Advanced Materials, vol. 21, pp. 79, 2009.
    [21] D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. Friend, “Efficient single-layer polymer light-emitting diodes.,” Advanced materials (Deerfield Beach, Fla.), vol. 22, pp. 3194, 2010.
    [22] C. Molecular, P. O. Box, R. Manuscript, and R. December, “Diode Using ZnO as the Air-Stable Cathode,” Chemistry of Materials, vol. 91, pp. 439, 2009.
    [23] V. Wood, M. J. Panzer, J. E. Halpert, J.-M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs.,” ACS nano, vol. 3, pp. 3581, 2009.
    [24] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics, vol. 2, pp. 247, 2008.
    [25] J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure.,” Nano Letters, vol. 12, pp. 2362, 2012.
    [26] J. Lim, W. K. Bae, J. Kwak, S. Lee, and C. Lee, “Perspective on synthesis , device structures , and printing processes for quantum dot displays,” Optical Materials Express, vol. 2, pp. 11651, 2012.

    References-Chapter 2
    [1] A. V Kukhto, “Electroluminescence of Thin Films of Organic Compounds (Review),” Journal of Applied Spectroscopy, vol. 70, pp. 151, 2003.
    [2] N. G. Bakhshiev, M. I. Knyazhanskii, V. I. Minkin, O. A. Osipov, and G. V Saidov, “Experimental Determination of the Dipole Moments of Organic Molecules in Excited Electronic Experimental Determination of the Dipole Moments of Organic Molecules in Excited Electronic Statesf,” Russian Chemical Reviews, vol. 740, pp. 740, 1969.
    [3] S. M. Reimann and M. Manninen, “Electronic structure of quantum dots,” Reviews of Modern Physics, vol. 74, pp. 1283, 2002.
    [4] V. M. Agranovich and D. M. Basko, “Resonance energy transfer from a semiconductor quantum dot to an organic matrix,” Jetp Letters, vol. 69, pp. 250, 1999.
    [5] S. Bandyopadhyay, “Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots,” Phys Rev B Condens Matter, vol. 61, pp. 13813, 2000.
    [6] A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?,” Journal of the American Chemical Society, vol. 127, pp. 1242, 2005.
    [7] M. Anni, L. Manna, R. Cingolani, D. Valerini, A. Cretí, and M. Lomascolo, “Förster energy transfer from blue-emitting polymers to colloidal CdSe∕ZnS core shell quantum dots,” Applied Physics Letters, vol. 85, p. 4169, 2004.
    [8] M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well.,” Nature, vol. 429, pp. 642, 2004.
    [9] D. V Talapin, J.-S. Lee, M. V Kovalenko, and E. V Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications.,” Chemical reviews, vol. 110, pp. 389, 2010.
    [10] O. Mitrofanov, T. Siegrist, D. V Lang, C. Kloc, W. Y. So, M. A. Sergent, and A. P. Ramirez, “Defects in Organic Molecular Crystals: Spectroscopy and Effects on Electronic and Optical Properties,” 2007 IEEE International Reliability Physics Symposium Proceedings 45th Annual, pp. 240, 2007.
    [11] C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex,” Angewandte Chemie, vol. 119, pp. 1127, 2007.
    [12] J. R. Sommer, R. T. Farley, K. R. Graham, Y. Yang, J. R. Reynolds, J. Xue, and K. S. Schanze, “Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho[2,3]porphyrin)platinum(II).,” ACS applied materials interfaces, vol. 1, pp. 274, 2009.
    [13] A. Gopal, K. Hoshino, S. Kim, and X. Zhang, “Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers.,” Nanotechnology, vol. 20, p. 235201, 2009.
    [14] Y. Q. Li, a. Rizzo, R. Cingolani, and G. Gigli, “Bright White-Light-Emitting Device from Ternary Nanocrystal Composites,” Advanced Materials, vol. 18, pp. 2545, 2006.
    [15] P. Guyot-Sionnest, “Colloidal quantum dots,” Comptes Rendus Physique, vol. 9, pp. 777, 2008.
    [16] J. Zhao, J. a Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I.-K. Ding, J. Luo, B. Chen, A. K.-Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer.,” Nano letters, vol. 6, pp. 463, 2006.
    [17] J. H. Warner, A. R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, and H. Rubinsztein-Dunlop, “Energy transfer dynamics of nanocrystal-polymer composites.,” The Journal of Physical Chemistry B, vol. 109, pp. 9001, 2005.
    [18] M. J. Panzer, K. E. Aidala, P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulović, “Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films.,” Nano Letters, vol. 10, pp. 2421, 2010.
    [19] M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion.,” Nano Letters, vol. 6, pp. 1396, 2006.
    [20] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics, vol. 2, pp. 247, 2008.
    [21] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, “Electroluminescence from CdSe quantum-dot/polymer composites,” Applied Physics Letters, vol. 66, p. 1316, 1995.
    [22] P. Anikeeva, C. Madigan, J. Halpert, M. Bawendi, and V. Bulović, “Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots,” Physical Review B, vol. 78, pp. 1, 2008.
    [23] R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, “Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices,” Journal of Applied Physics, vol. 104, p. 014510, 2008.
    [24] J.-M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, “NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices,” Nano Letters, vol. 6, pp. 2991, 2006.
    [25] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Thomas, M. G. Bawendi, and M. F. Rubner, “Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals,” Journal of Applied Physics, vol. 83, p. 7965, 1998.
    [26] S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices.,” Nature, vol. 420, pp. 800, 2002.
    [27] Z. Tan, B. Hedrick, F. Zhang, T. Zhu, J. Xu, R. H. Henderson, J. Ruzyllo, and A. Y. Wang, “Stable Binary Complementary White Light-Emitting Structures,” vol. 20, pp. 1998, 2008.
    [28] K. Cho, E. K. Lee, W. Joo, E. Jang, T. Kim, S. J. Lee, S. Kwon, J. Y. Han, B. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” vol. 3, pp. 2, 2009.
    [29] A. G. Pattantyus-abraham, Ќ. I. J. Kramer, Ќ. A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, and E. H. Sargent, “Depleted-Heterojunction Colloidal,” vol. 4, pp. 3374, 1800.
    [30] W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, “Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method.,” Nano letters, vol. 10, pp. 2368, 2010.
    [31] J. Huang, Z. Xu, and Y. Yang, “Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate,” Advanced Functional Materials, vol. 17, pp. 1966, 2007.
    [32] J. W. Stouwdam and R. a. J. Janssen, “Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers,” Journal of Materials Chemistry, vol. 18, p. 1889, 2008.
    [33] J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulovic, and M. G. Bawendi, “Color-saturated green-emitting QD-LEDs.,” Angewandte Chemie International Edition, vol. 45, pp. 5796, 2006.
    [34] A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D’Amone, R. Cingolani, and G. Gigli, “Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers,” Advanced Materials, vol. 20, pp. 1886, 2008.
    [35] V. Wood, M. J. Panzer, J. E. Halpert, J.-M. Caruge, M. G. Bawendi, and V. Bulović, “Selection of metal oxide charge transport layers for colloidal quantum dot LEDs.,” ACS nano, vol. 3, pp. 3581, 2009.
    [36] J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure.,” Nano Letters, vol. 12, pp. 2362, 2012.
    [37] Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies,” Nature Photonics, vol. 7, pp. 13, 2012.
    [38] S. R. Kennedy and M. J. Brett, “Porous broadband antireflection coating by glancing angle deposition.,” Applied Optics, vol. 42, pp. 4573, 2003.
    [39] M. N. Kamalasanan and S. Chandra, “Sol-gel synthesis of ZnO thin films,” Thin Solid Films, vol. 288, pp. 112, 1996.

    References-Chapter 3
    [1] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Optical Materials, vol. 32, pp. 515, 2010.
    [2] H.-M. Kim, J.-H. Youn, G.-J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” Journal of Materials Chemistry C, vol. 1, p. 1567, 2013.
    [3] M. N. Kamalasanan and S. Chandra, “Sol-gel synthesis of ZnO thin films,” Thin Solid Films, vol. 288, pp. 112, 1996.
    [4] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer.,” Advanced materials Deerfield Beach Fla, vol. 23, pp. 1679, 2011.
    [5] H. J. Bolink, E. Coronado, J. Orozco, and M. Sessolo, “Efficient Polymer Light-Emitting Diode Using Air-Stable Metal Oxides as Electrodes,” Advanced Materials, vol. 21, pp. 79, 2009.
    [6] P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee, and C. C. Cheng, “The ultraviolet emission mechanism of ZnO thin film fabricated by sol–gel technology,” Journal of the European Ceramic Society, vol. 27, pp. 3815, 2007.
    [7] J.-Y. Chun, J.-W. Han, and D.-S. Seo, “Molybdenum-Doped Zinc Oxide Electrodes for Organic Light-Emitting Devices,” Electrochemical and Solid-State Letters, vol. 12, pp. J47, 2009.
    [8] S. Flickyngerova, K. Shtereva, V. Stenova, D. Hasko, I. Novotny, P. Sutta, and E. Vavrinsky, “Structural and optical properties of sputtered ZnO thin films,” Applied Surface Science, vol. 254, pp. 3643, 2008.
    [9] L. Qian, Y. Zheng, K. R. Choudhury, D. Bera, F. So, J. Xue, and P. H. Holloway, “Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages,” Nano Today, vol. 5, pp. 384, 2010.

    References-Chapter 4
    [1] J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Yoon, K. Char, S. Lee, and C. Lee, “Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure.,” Nano Letters, vol. 12, pp. 2362, 2012.
    [2] D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. Friend, “Efficient single-layer polymer light-emitting diodes.,” Advanced materials (Deerfield Beach, Fla.), vol. 22, pp. 3194, 2010.
    [3] Y. Li, D.-Q. Zhang, L. Duan, R. Zhang, L.-D. Wang, and Y. Qiu, “Elucidation of the electron injection mechanism of evaporated cesium carbonate cathode interlayer for organic light-emitting diodes,” Applied Physics Letters, vol. 90, p. 012119, 2007.
    [4] H. Liao, L. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs 2 CO 3 interlayer,” Applied Physics Letters, vol. 92, pp. 3, 2008.
    [5] Y. Cai, H. X. Wei, J. Li, Q. Y. Bao, X. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang, “Mechanism of Cs[sub 2]CO[sub 3] as an n-type dopant in organic electron-transport film,” Applied Physics Letters, vol. 98, p. 113304, 2011.
    [6] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs[sub 2]CO[sub 3] interlayer,” Applied Physics Letters, vol. 92, p. 173303, 2008.
    [7] M. Y. Chan, S. L. Lai, M. K. Fung, S. W. Tong, C. S. Lee, and S. T. Lee, “Efficient CsF/Yb/Ag cathodes for organic light-emitting devices,” Applied Physics Letters, vol. 82, p. 1784, 2003.
    [8] M. K. Fung, S. L. Lai, S. W. Tong, S. N. Bao, C. S. Lee, W. W. Wu, M. Inbasekaran, J. J. O’Brien, and S. T. Lee, “Distinct interfaces of poly (9,9-dioctylfluorene-co-benzothiadiazole) with cesium and calcium as observed by photoemission spectroscopy,” Journal of Applied Physics, vol. 94, p. 5763, 2003.
    [9] J. Colegrove, “OLED Display and OLED Lighting : Technologies and Market Forecast,” in Semicon West, 2012, p. 28.
    [10] K. Han, Y. Yi, W. Song, S. Cho, P. Jeon, H. Lee, C. Whang, and K. Jeong, “Dual enhancing properties of LiF with varying positions inside organic light-emitting devices,” Organic Electronics, vol. 9, pp. 30, 2007.
    [11] F. Wang, S. Liu, and C. Zhang, “The dielectric constant of materials effect the property of the OLED,” Microelectronics Journal, vol. 38, pp. 259, 2007.
    [12] J. Zhao, J. a Bardecker, A. M. Munro, M. S. Liu, Y. Niu, I.-K. Ding, J. Luo, B. Chen, A. K.-Y. Jen, and D. S. Ginger, “Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer.,” Nano letters, vol. 6, pp. 463, 2006.
    [13] A. Gopal, K. Hoshino, S. Kim, and X. Zhang, “Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers.,” Nanotechnology, vol. 20, p. 235201, 2009.
    [14] H.-M. Kim, J.-H. Youn, G.-J. Seo, and J. Jang, “Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a cathode buffer,” Journal of Materials Chemistry C, vol. 1, p. 1567, 2013.
    [15] L. Kim, P. O. Anikeeva, S. a Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, “Contact printing of quantum dot light-emitting devices.,” Nano letters, vol. 8, pp. 4513, 2008.
    [16] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nature Photonics, vol. 2, pp. 247, 2008.
    [17] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum 2009,” 2009.
    [18] K. Cho, E. K. Lee, W. Joo, E. Jang, T. Kim, S. J. Lee, S. Kwon, J. Y. Han, B. Kim, B. L. Choi, and J. M. Kim, “High-performance crosslinked colloidal quantum-dot light-emitting diodes,” vol. 3, pp. 2, 2009.
    [19] D. Raoufi and T. Raoufi, “The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films,” Applied Surface Science, vol. 255, pp. 5812, 2009.
    [20] Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu, and S. Yang, “X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition,” Journal of Crystal Growth, vol. 252, pp. 180, 2003.
    [21] X. Wei, B. Man, M. Liu, C. Xue, H. Zhuang, and C. Yang, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2,” Physica B: Condensed Matter, vol. 388, pp. 145, 2007.
    [22] W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface I Total radiated power,” Journal of the Optical Society of America, vol. 67, p. 1607, 1977.
    [23] H. Becker, S. E. Burns, and R. H. Friend, “Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers,” Physical Review B, vol. 56, pp. 1893, 1997.
    [24] D. E. Markov and P. W. M. Blom, “Exciton quenching in poly(phenylene vinylene) polymer light-emitting diodes,” Applied Physics Letters, vol. 87, pp. 233511/1, 2005.
    [25] K. Shimizu, W. Woo, B. Fisher, H. Eisler, and M. Bawendi, “Surface-Enhanced Emission from Single Semiconductor Nanocrystals,” Physical Review Letters, vol. 89, p. 117401, 2002.
    [26] R. a. M. Hikmet, D. V. Talapin, and H. Weller, “Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites,” Journal of Applied Physics, vol. 93, p. 3509, 2003.
    [27] F. C. Krebs, Y. Thomann, R. Thomann, and J. W. Andreasen, “A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air,” Nanotechnology, vol. 19, p. 424013, 2008.
    [28] Y.-S. Kim, W.-P. Tai, and S.-J. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol–gel process,” Thin Solid Films, vol. 491, pp. 153, 2005.
    [29] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO Film as an electron transport layer.,” Advanced materials Deerfield Beach Fla, vol. 23, pp. 1679, 2011.
    [30] C.-Y. Li, Y.-N. Chou, J.-R. Syu, S.-N. Hsieh, T.-D. Tsai, C.-H. Wu, T.-F. Guo, W.-C. Hsu, Y.-J. Hsu, and T.-C. Wen, “Effect of annealing ZnO on the performance of inverted polymer light-emitting diodes based on SAM/ZnO as an electron injection layer,” Organic Electronics, vol. 12, pp. 1477, 2011.
    [31] M. Quaas, C. Eggs, and H. Wulff, “Structural studies of ITO thin ® lms with the Rietveld method,” Thin Solid Films, vol. 332, pp. 277, 1998.
    [32] R. G. Gordon, “Criteria for Choosing Transparent Conductors,” MRS Bulletin, no. August, pp. 52–57, 2000.
    [33] G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” Journal of Applied Physics, vol. 83, p. 5399, 1998.

    無法下載圖示 校內:2018-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE