| 研究生: |
王重凱 Wang, Chung-Kai |
|---|---|
| 論文名稱: |
移動最小功法在二維彈性力學問題分析之應用 Analysis of Two Dimensional Elasticity by The Moving Least Work Method |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 無元素法 、移動最小二乘法 、移動最小功法 、二維彈性力學 |
| 外文關鍵詞: | Meshless Method, Moving Least Square, Moving Least Work, Two-dimensional elasticity |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用了移動最小功法(Moving Least Work Method)來模擬二維彈性力學的問題。移動最最小功法的特別之處是在加權殘值時,乘上其共軛的殘值量,使其產生類似功的概念,最後再經由置點的方式求解得到所有的變數。
文中模擬了懸臂梁受剪力、簡支梁受均部荷重、無限板中央裂縫受拉力及無限板中央開孔受拉力等二維彈性力學問題,經由不同的佈點方式及不同的基底階數去比較解析解以驗證此方法的可行性,並分析其誤差收斂的情形。
In this thesis, we use the moving least work method to analyze the two dimensional elasticity problems. The peculiarity of the moving least work method is the process of weighting residual value. We multiply the conjugate value of its original residual value to create the quantity which is similar to energy, and use the point collocation method at the end.
Using the present method, we simulate a cantilever beam loaded by the shear force, a simply support beam loaded by the uniform load, an infinite plate with a crack in the middle loaded by the tensile force and an infinite plate with a hole loaded by the tensile force. In these examples, we use different point distribution and different order of base functions to validate the applicability of this method, and compare the numerical results with the exact solution to examine the accuracy and the rate of convergence of this method.
[1] L. B. Lucy., A numerical approach to the testing of the fissionhypothesis,The Astron, Journal, 82: 1013-1024, (1977).
[2]Lancaster, P., & Salkauskas, K., Surfaces generated by moving least squares methods. Mathematics of computation, 37(155), 141-158, (1981).
[3] Nayroles, B., Touzot, G., & Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics, 10(5), 307-318, (1992).
[4] T. Belytschko, L. Gu and Y. Y. Lu, Fracture and crack growt by element-free Galerkin methods, Modeling and Simulation in Materials Science and Engineering, 2, 519-534, (1994).
[5] Liu, W. K. S. Jun and Y. F. Zhang, Reproducing kernel particle methods, International journal for Numerical methods Engineering, 20, 1081-1106, (1995).
[6] Liu, W. K., Jun, S., Li, S., Adee, J., & Belytschko, T., Reproducing kernel particle methods for structural dynamics. International journal for numerical methods in engineering, 38(10), 1655-1679, (1995).
[7]Chen, J.-S., Pan, C., Wu, C.-T., & Liu, W. K., Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer methods in applied mechanics and engineering, 139(1), 195-227, (1996).
[8] Oñate, E., Idelsohn, S., Zienkiewicz, O., & Taylor, R., A finite point method in computational mechanics. Applications to convective transport and fluid flow. International journal for numerical methods in engineering, 39(22), 3839-3866, (1996).
[9] Desbrun, M., & Gascuel, M.-P. Smoothed particles: A new paradigm for animating highly deformable bodies: Springer, (1996).
[10] Liszka, T., C. Duarte, and W. Tworzydlo, Meshless cloud method. Computer Methods in Applied Mechanics and Engineering, 139(1): 263-288, (1996).
[11] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P., Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 139(1), 3-47, (1996).
[12] Krongauz, Y., & Belytschko, T., A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG. Computational mechanics, 19(4), 327-333, (1997).
[13] T. Zhu, J,D, Zhang, S.N. Atluri, A Meshless Local Boundary Integral Equation (LBIE) Method for solving Nonlinear Problems, Computational Mechanics, 22, 174-186, (1998).
[14] Oñate, E., Perazzo, F., & Miquel, J., A finite point method for elasticity problems. Computers & Structures, 79(22), 2151-2163, (2001).
[15] Long, S., & Atluri, S., A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate. Computer Modeling in Engineering and Sciences, 3(1), 53-64, (2002).
[16]翁啟照.無元素葛勒金法在二維彈力之應用.國立成功大學土木工程研究所, (2008).
[17] Y.M.Wang, S.M.Chen, C.P.Wu, A meshless collocation method based on the differential reproducing kernel interpolation, Computational Mechanics, 45, 585-606, (2010).
[18]楊佳蓉.齊次基底移動最小二乘法在二維彈性力學上之應用.國立成功大學土木工程研究所, ( 2011).
[19]吳建勳.受束制之移動最小二乘法在二維彈性力學問題上之應用.國立成功大學土木工程研究所, (2013).
[20]陳昱任.基於狀態變數與Hermite型置點法之移動最小二乘法在二維彈性力學之應用.國立成功大學土木工程研究所, (2014).
[21] Timoshenko, S. P., Googier, J. N. Theory of Elasticity, 3rd Edn, McGraw-Hill, New York, (1970).
[22] Green, A. E., Zerna, W. Theoretical Elasticity, 2nd Edn, Oxford University Press, Ely House, London, (1968).
[23]Sadd, M. H. Elasticity : theory, applications, and numerics. Amsterdam; Boston : Elsevier Butterworth-Heinemann, c, (2005).
校內:2021-08-25公開