| 研究生: |
李銘軒 Li, Ming-Hsuan |
|---|---|
| 論文名稱: |
高分子分子量對磁性奈米柱在均聚物及團聯共聚物中排列行為的影響 Effect of Molecular Weight on the Arrangement of Magnetic Nanorods in Homopolymer and Block Copolymer |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 磁性奈米柱 、團聯共聚物 、均聚物 、迴旋半徑 、排列 |
| 外文關鍵詞: | magnetic nanorods, diblock copolymer, homopolymer, radius of gyration, arrangement |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Fe2P磁性奈米柱與均聚物 poly(2-vinylpyridine) (P2VP)和poly(styrene-b-2-vinylpyridine) (PS-b-P2VP)進行混摻形成複合材料。藉由改變複合材料系統中的條件,研究Fe2P奈米柱在複合材料的排列行為。
在奈米柱/P2VP複合材料的研究中,奈米柱是否能夠在均聚物中均勻分散的因素與奈米柱之間的偶極偶極作用力、奈米柱添加量、均聚物分子量及奈米柱與均聚物的迴旋半徑(radius of gyration, Rg)有關,奈米柱Rg小於均聚物Rg時,奈米柱能均勻分散在均聚物中,反之,若奈米柱Rg大於均聚物Rg時,奈米柱之間形成聚集。另外,在高奈米柱比例時,奈米柱間的偶極偶極作用力為主要影響奈米柱分散的因素。
在奈米柱/PS-b-P2VP複合材料的研究中,由於合成出的奈米柱表面殘留的TOPO及TOP與團聯共聚物中的兩鏈段皆不相容,我們藉由熱迴流方式以pyridine改質奈米柱,使奈米柱表面接枝pyridine官能基。改質後的奈米柱在共聚物中的位置及角度分佈有一選擇性,奈米柱會分佈在P2VP區並接近高分子層界面,其角度則受P2VP的形態熵(conformational entropy)影響,使其平行於高分子層界面。當改變共聚物分子量時,隨著分子量上升,奈米柱/團聯共聚物系統所能承載的奈米柱體積增加,在相同奈米柱比例下,奈米柱的聚集現象會減小;且能夠選擇性進入到P2VP區中的奈米柱數量增加,平行排列於高分子層界面的奈米柱也隨之增加。
Fe2P were mixed with poly(2-vinylpyridine) (P2VP) and poly(styrene-b-2-vinylyridine) (PS-b-P2VP), respectively, to prepare composites. We carefully tune the molecular properties of nanorods and polymers to investigate the self-assembled behavior of nanorods in these composites.
In nanorod/P2VP composites, the molecular properties, including dipole-dipole interactions between nanorods, particle loading, homopolymer molecular weight, and radius of gyration (Rg) of nanorods and homopolymer, affect the dispersion of nanorods in homopolymer. When the radius of gyration of nanorods was less than the radius of gyration of homopolymer, nanorods were well-dispersed in homopolymer. On the other hand, nanorods formed aggregation when the radius of gyration of nanorods was larger than the radius of gyration of homopolymer. In addition, the dipole-dipole interactions between nanorods played a key role on the dispersion of nanorods at high particle loading.
In nanorod/PS-b-P2VP composites, the residual TOPO and TOP on the rod surface were incompatible with block copolymer. We modified the rod surface by a ligand exchange procedure using pyridine to improve the compatibility between nanorods and P2VP domains. The pyridine-tethered nanorods showed a selectivity on the position and orientation in block copolymer. Nanorods tended to locate in the P2VP domain, close to the polymer interface. The specific orientation of nanorods was developed due to the conformational entropy of P2VP, which drove nanorods to align parallel to the polymer interface. Meanwhile, more nanorods could be incorporated into PS-b-P2VP when the molecular weight of PS-b-P2VP increased. At high molecular weight, the aggregation of nanorods reduced and more nanorods located in the P2VP domain. Simultaneously, more nanorods aligned parallel to the polymer interface.
1 徐國財、張立德, 奈米複合材料, 五南出版社, 2004
2 馬振基, 奈米材料科技原理與應用, 全華科技圖書股份有限公司, 2003
3 張立德, 奈米材料, 五南出版社, 2002
4 尹邦躍, 奈米時代, 五南出版社, 2002
5 張煦, 磁性物理學, 聯經出版社, 1981
6 D. L. Huber, Small, 2005, 1, 5, 482.
7 陳奕瀚, 以離子型高分子製備核殼型與中空形奈米磁性複合微粒之研究, 南台科技大學化材系碩士論文, 2006.
8 H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada, Physics Letters A, 1999, 263, 4-6, 406.
9 H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Physical Review B, 2004, 69, 174411.
10 N. Hadjichristidis, ed, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, John Wiley & Sons, Inc., 2003.
11 F. Liu, N. Goldenfeld, Physical Review A, 1989, 39, 9, 4805.
12 A. Chakrabarti, R. Toral, and J. D. Gunton, Physical Review A, 1991, 44, 10, 6503.
13 L. Leibler, Macromolecules, 1980, 13, 1602.
14 E. Helfand, and Z. R. Wasserman, Macromolecules, 1978, 11, 960.
15 E. Helfand, and Z. Wasserman, Macromolecules, 1980, 13, 994.
16 I. W. Hamley, ed, The Physics of Block Copolymers, Oxford University Press, 1998.
17 E. Helfand, Macromolecules, 1975, 8, 552.
18 J. D. Vavasour, and M. D. Whitmore, Macromolecules, 1992, 25, 5477.
19 M. W. Matsen, Self-Consistent Field Theory and Its Applications, Soft Matter, 1, 2006.
20 G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, Pharmaceutical Research, 1995, 12, 2, 192.
21 Q. L. Zhang, S. Gupta, T. Emrick, and T. P. Russell, J. Am. Chem. Soc., 2006, 128, 12, 3898.
22 R. D. Deshmukh, Y. Liu, and R. J. Composto, Nano Letters, 2007, 7, 12, 3662.
23 J. J. Chiu, B. J. Kim, E. J. Kramer, and D. J. Pine, J. Am. Chem. Soc., 2005, 127, 5036.
24 B. J. Kim, J. Bang, C. J. Hawker, and E. J. Kramer, Macromolecules, 2006, 39, 4108.
25 M. E. Mackay, A. Tuteja, P. M. Duxbury, C. J. Hawker, B. VanHorn, Z. Guan, G. Chen, and R. S. Krishnan, Science, 2006, 311, 1740.
26 S. K. Kumar, and R. Krishnamoorti, Annu. Rev. Chem. Biomol, 2010, 1, 37.
27 A. L. Frischknecht, M. J. A. Hore, J. Ford, and R. J. Composto, Macromolecules, 2013, 46, 2856.
28 G. Jiang, M. J. A. Hore, S. Gam, and R. J. Composto, ACS NANO, 2012, 6, 2, 1578.
29 J. Park, B. Koo, K. Y. Yoon, Y. Hwang, M. Kang, J.-G. Park, and T. Hyeon, J. Am. Chem. Soc., 2005, 127, 23, 8433.
30 N. Singh, P. Khanna, and P. A. Joy, J Nanopart Res, 2009, 11, 491.
31 K. Senevirathne, A. W. Burns, M. E. Bussell, and S. L. Brock, Adv. Funct. Mater., 2007, 17, 18, 3933.
32 X. Wang, Novel, High Activity Hydroprocessing Catalysts: Iron Group Phosphides, Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VI, 2002.
33 林威廷, 磁性奈米柱在團聯共聚物及均聚物中的排列行為, 國立成功大學化學工程學系碩士論文, 2011.
34 M. K. Bayazit, L. S. Clarke, K. S. Coleman, and N. Clarke, J. Am. Chem. Soc., 2010, 132, 15814.
35 C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY, Physical Electronics, Perkin-Elmer corp., 1979.
36 K. D. Kim, L. H. Sperling, A. Klein, and G. D. Wignall, Macromolecules, 1993, 26, 4624.
37 C. T. Lo, and K. H. Tsui, Polym. Int.., 2013, doi: 10.1002/pi.4462.
38 C. T. Lo, and W. T. Lin, J. Phys. Chem. B, 2013, 117, 5261.
39 B. D. Cullity, Introduction to Magnetic Materials, Addison Wesley, 1972, 90.
40 D. Kumar, A. Syamal, Jaipal, and L. K. Sharma, J. Chem. Sci., 2009, 121, 1, 57.
41 J. L. Wilson, Synthesis and magnetic properties of polymer nanocomposites, University of South Florida, 2004.
校內:2016-09-13公開