簡易檢索 / 詳目顯示

研究生: 陳俊延
Chen, Chun-Yen
論文名稱: 以創新光生物反應器設計與醱酵策略促進光醱酵產氫效能
Innovative photobioreactor design and fermentation strategies for enhanced phototrophic H2 production
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 227
中文關鍵詞: 乙酸丁酸暗醱酵光感測器太陽能回應曲面實驗設計法光醱酵產氫光纖光合菌光生物反應器
外文關鍵詞: response surface methodology, Phototrophic hydrogen production, Clostridium pasteurianum, dark fermentation, photosynthetic bacteria, photobioreactor, acetic acid, butyric acid, solar energy, optical-fiber, light dependent resistor, Rhodopseudomonas palustris
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一套新穎的光纖光生物反應器進行光醱酵產氫,由於傳統的光纖材料屬於端點發光,本研究利用表面改質製備側光光纖,並將側光光纖插入光生物反應器作為內部光源,以促進光源效率與分佈。本研究首先探討不同光源對光合產氫效能的影響,結果顯示,在單一光源的測試,使用鹵素燈當作光源可以得到較佳的光合產氫效能,其總產氫速率以及氫氣產率分別為8.68 ml/l/h以及1.09 mol H2/mol HAc。此外,藉由適當的光源組合可提升光醱酵產氫效率,結合雙光源之結果顯示,結合內部光源 (OF-MH)以及外部光源(HL)可將總產氫速率以及氫氣產率分別提升至 17.24 ml/l/h以及2.22 mol H2/mol HAc。有鑑於此,本研究更致力於發展更有效率且更經濟之光醱酵產氫技術,以降低其商業化應用之門檻。
    為了瞭解不同操作模式對產氫效能的影響,本研究以批次、連續攪拌式以及fill and draw (F/D)之進料策略探討各操作策略對光合菌產氫效能的影響。在相同的培養條件下(鹵素燈為光源),使用F/D當作操作策略,在連續10天的操作期間,確實能夠得到較高的光合產氫效率,其產氫速率達15.5 ml/h/l。本研究並以不同濃度(1000-3000 mg COD/L)的乙酸(碳源)以及不同濃度(100-800 mg/L)的肤胺酸(氮源)探討基質組成對該光合菌產氫之影響,結果顯示在最佳的乙酸 (2000 mg COD/l)以及肤胺酸 (400 mg/l)濃度下,其最大產氫速率以及氫氣產率將分別為 20.9 ml/l/h以及 2.47 mol H2/mol HAc。將最佳光源配置應用於F/D之操作策略,其總產氫速率以及氫氣產率大幅提升至 38.2 ml/l/h和 3.15 mol H2/mol HAc。因此,證明本研究所開發之光纖生物反應器與 F/D之操作策略確實能夠有效提升Rhodopseudomonas palutris WP3-5之光合產氫效能。
    此外,本研究亦探討固體載體添加對Rhodopseudomonas palutris WP3-5菌株光合產氫效能之影響。添加不同的載體,如活性炭(AC)、矽膠 (SG)以及黏土(clay)於醱酵培養基中可促進菌體濃度以及光合產氫效能,尤其是添加2%的clay能有效提升光合產氫速率(67.2%)以及氫氣產率(37.2%)。接著,本研究以不同濃度(1,000-3,000 mg COD/l)的乙酸,探討使用clay當作載體對光合菌產氫之影響。結果顯示使用1,000 mg COD/l的乙酸當作碳源,總產氫速率以及氫氣產率可分別提高至28.5 ml/l/h及74.3% (2.97 mol H2/mol HAc)。最後,本研究企圖將新穎的光纖發光技術結合clay之添加以及最佳乙酸初始濃度等以促進光合產氫效能,此最佳組合可分別將總產氫速率以及氫氣產率再提升至43.8 ml/l/h 與 3.63 mol H2/mol HAc,此產氫效能明顯高於相關文獻之效能,因此,更說明本研究所開發之光纖光生物反應器確實具有提升光合產氫效能之功效。
    雖然改良光反應器系統與操作策略可有效提升光合產氫效能,然而使用人工光源(鎢絲燈、鹵素燈以及副金屬燈)具有高操作成本(燈源電費)以及高建構成本(燈源成本)的缺點。因此,改良光源供應的方式將是發展光醱酵產氫程序的關鍵技術。有鑑於此,本研究以太陽能取代人工光源來激發光纖,並以太陽能光纖光生物反應器來降低大量的電能消耗。結果顯示,利用太陽能激發光纖之發光系統,其累積產氫量以及氫氣產率分別比使用鎢絲燈提高近138% 以及 136%。然而,利用太陽能激發光纖時有光強度不穩定的現象,因太陽能之光照強度會隨著天氣、季節、設置位置、太陽能光譜以及操作時間而改變。因此,本研究開發一套光感測系統去監控反應器所接受之光照強度,當太陽光光纖光生物反應器之內部光照強度低於30 W/m2時,系統會自行開啟光生物反應器外部所架設之鎢絲燈源,以達到均勻且穩定的光能供應。結合光感測器以及太陽能光纖光生物反應器,其累積產氫量以及氫氣產率分別比單獨使用太陽能光纖光生物反應器高出26.8%與26.7%,且電能之消耗更節省。
    由於乙酸以及丁酸為暗醱酵產氫之主要液相代謝產物,因此,此兩種碳源的濃度比例被視為光合菌產氫以及菌體生長之重要影響因子。本研究利用回應曲面實驗設計法探討乙酸以及丁酸之最佳組成,並且以氫氣產率 (YH2)、最大氫氣產生速率 (Rmax) 以及總產氫速率(Roverall)為功能指標,來評估光合產氫之效能。由於發現不同功能指標得到不同的乙酸與丁酸最適化組成,為綜合考量三個功能指標(Rmax、Hmax以及 YH2),本研究開發overlay contour plots 之實驗設計法,已獲得同時滿足Rmax、Hmax與YH2時之最適化碳源比例。
    最後,本研究以實際暗醱酵程序所產生的廢水為基質來進行光醱酵產氫程序,藉由兩系統的結合,來提高氫氣產率並降低放流水COD含量。本研究以20000 mg COD/l的蔗糖為碳源,使用由高效能厭氧產氫污泥槽中篩選到的 Clostridium pasteurianum CH4純菌株進行暗醱酵產氫,可得氫氣產率為2.5 mol H2/mol sucrose。接著,將暗醱酵殘留液適當稀釋後(丁酸,乙酸與氨氮濃度分別為2900 mg COD/l、900 mg COD/l以及21 mg/l)作為基質,利用 Rhodopseudomonas palustris WP 3-5進行光醱酵氫氣。結合暗醱酵與光醱酵之產氫程序可將氫氣總產率由原先的2.5 mol H2/mol sucrose提升至7.5 mol H2/mol sucrose,若再結合測光光纖發光系統,其氫氣產率可進一步提高至9.76 mol H2/mol sucrose。因此,結合暗醱酵以及光醱酵之串聯產氫系統,確能有效改進產氫效能並分解暗醱酵產氫廢水所殘留之COD,以避免衍生之環境污染問題。

    In this work, a novel optical-fiber-based photobioreactor was utilized to produce H2 with an indigenous photosynthetic bacterium Rhodopseudomonas palustris WP3-5. Plastic cladding of conventional optical fibers was removed to obtain side-light optical fibers (SLOF), which was inserted into photobioreactors as the internal light source. The effect of light sources on the phototrophic hydrogen production was examined. The results show that among the single light source tested, illumination with halogen filament lamp gave a higher overall H2 production rate of 8.68 ml/l/h and H2 yield of 1.09 mol H2/mol HAc. Binary combination of external and internal light sources appeared to give higher photo-H2 production performance, especially when optical fibers (OF-MH) and external lamps (HL) were combined. This motivated us to develop viable fermentation technology to produce hydrogen in a more efficient and cost-effective way.
    To determine which operation mode was preferable for the photo-H2 production, batch, CSTR and fill & draw (F/D) operations were conducted. The results suggest that under similar culture conditions, the F/D operation seemed to attain better overall H2 production rate (15.5 ml/l/h) than the other operation modes examined. For medium improvement, the PBR was conducted under different concentrations of carbon source (HAc) and nitrogen source. The results show that the optimal HAc (2000 mg COD/l) and glutamic acid (400 mg/l) concentration led to a vH2 and YH2 of 20.9 ml/h/l and 2.47 mol H2/mol HAc, respectively. Combined with F/D operation strategy and optimal light source arrangement (i.e., the OF/HL/TL system), the overall H2 production and H2 yield was further enhanced to as high as 38.2 ml/h/l and 3.15 mol H2/mol HAc, respectively. These results demonstrated that using optical fiber-illuminating photobioreactor was excellent in promoting H2-producing performance from fill-and-draw cultures of R. palustris WP3-5.
    Meanwhile, it was found that photo-H2 production could be improved by adding solid carriers in the fermentation broth containing cells of R. palustris WP3-5. Addition of a small quantity (2%) of clay into fermentation broth significantly promoted H2 production, resulting in 67.2% and 37.2% increases in H2 production rate (vH2) and H2 yield (YH2), respectively. Moreover, the preferable carbon and nitrogen sources was determined, as using a optimal initial HAc concentration of 1000 mg COD/l and glutamate concentration of 400 mg/l led to a vH2 and YH2 value of 28.5 ml/h/l and 2.97 mol H2/mol HAc, respectively. Finally, optical-fiber illuminating system was designed to facilitate the efficiency of the photobioreactor. Combination of internal optical-fiber illumination system, clay addition, and optimal HAc concentration further elevated the vH2 and YH2 to a maximum level of 43.8 ml/h/l and 3.63 mol H2/mol HAc, respectively. These values are considerably higher than most reported results from relevant studies.
    A novel solar-energy-excited optical fiber photobioreactor were designed and constructed to promote the phototrphic H2 production of R. palustris WP3-5. The photobioreactor was illuminated by combinative light sources including optical fiber excited by solar energy (internal light source) as well as external irradiation of tungsten filament lamp. The H2 production performance of the photobioreactor was assessed by using different light source arrangement for the day/night illumination. First, a solar-energy-excited optical fiber photobioracctor with a working volume of 50 ml was applied to investigate the effect on the cell growth and photo-H2 production. Second, the reactor was scaled up and different light source arrangement was employed. Finally, an innovative light sensor (light dependent resistor, LDS) was utilized to monitor solar light intensity. In this way, continuous and stable light supply to the photo-bioreactor was achieved by supplementing external light source when the light density from sunlight was low. This design appeared to facilitate the photo-H2 producing stability and productivity.
    In the combinative process of dark and photo fermentation, the predominant soluble metabolites (i.e., HAc and HBu) from dark fermentation was used as the substrate for photo-hydrogen production with R. palustris WP3-5. The best composition of HAc and HBu for H2 produciton was determined by using response surface methodology (RSM). In addition, a new overlay contour plots method was used to determine optimization of the HAc and HBu concentration by simultaneously considering all the three performance indexes (i.e., Rmax, Hmax and YH2). Using this method, the culture attained a Rmax of 39.5 ml/h, a Hmax of 2738 ml and a YH2 of 51.6 %.
    Dark and photo-H2 production systems have been combined in series to produce H2, achieving a higher yield and a lower chemical oxygen demand (COD) in the effluent. In this study, a pure strain of Clostridium pasteurianum CH4 isolated from efficient anaerobic H2-producing sludge was used for dark fermentation from sucrose medium. C. pasteurianum CH4 gave a H2 yield of 2.5 mol H2/mol sucrose in a batch culture. The dark fermentation broth was further utilized by R. palustris WP 3-5 to produce H2. The total H2 yield increased from 2.50 mol H2/mol sucrose in dark-fermentation to 7.50 mol H2/mol sucrose by using the two-step process. Moreover, combination of side-light optical-fiber illumination system further enhanced the total H2 yield to 9.76 mol H2/mol sucrose. Therefore, combining dark- and photo-fermentation could effectively increase H2 production yield and reduce the COD content derived from dark fermentation effluents.

    Abstract (Chinese) I Abstract (English) IV Acknowledgement VII Contents VIII List of tables XVI List of figures XX Notations XXVIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 1 1.3 Construction of dissertation 4 Chapter 2 Literature review 9 2.1 Overview of hydrogen energy 9 2.2 Hydrogen production 11 2.2.1 Conventional hydrogen production 11 2.2.2 Biological hydrogen production 13 2.2.2.1 Dark fermentation 14 2.2.2.2 Light fermentation 15 2.2.2.3 Hybrid system using photosynthetic and dark fermentative bacteria 16 2.3 Introduction to photosynthesis 20 2.3.1 Metabolism of photosynthesis 20 2.3.1.1 Oxygenic photosynthesis 20 2.3.1.2 Anoxygenic photosynthesis 21 2.3.1.3 Bacteriochlorophyll 21 2.4 Hydrogen-producing mechanism of photosynthesis microorganism 24 2.4.1 algae 27 2.4.2 cyanobacteria 28 2.4.3 purple nonsulfur bacteria 29 2.4.4 Different growth mode for the purple nonsulfur bacteria 30 2.4.5 The hydrogen producing enzyme of photosynthesis microorganism 33 2.4.5.1 Nitrogenase 33 2.4.5.2 Hydrogenase 34 2.5 Medium composition on photosynthetic microorganims 36 2.5.1 Carbon sources 36 2.5.2 Nitrogen sources 40 2.6 Effects of environmental factors on photosynthetic microorganims 41 2.6.1 Co-factor 41 2.6.2 Light intensity 41 2.6.3 Temperature 43 2.6.4 pH 43 2.7 Introduce to optical fiber 44 2.7.1 Category of the optical fibers 44 2.7.1.1 Single-mode optical fibers 44 2.7.1.2 Multi-mode optical fibers 45 2.7.1.3 Graded-index optical fibers 46 2.7.1.4 Step-index optical fibers 46 2.7.2 The composition of optical fiber 47 2.7.3 Application of optical fiber 47 2.7.4 Application of optical fiber in photobioreactor 48 2.8 Photobioreactor design for hydrogen production 49 2.8.1 General design for photo-hydrogen production 49 2.8.2 Cell immobilization for photo-hydrogen production 50 2.8.3 Sunlight as the energy source for photo-hydrogen production 51 2.8.4 Other photo-bioreactor design 54 2.9 Introduction to response surface methodology 60 Chapter 3 Materials and Methods 63 3.1 Chemicals and materials 63 3.2 Equipment 66 3.3 Flask experiments 70 3.3.1 Microorganisms and cultivation medium 70 3.3.2 Hydrogen-producing sludge and fermentation medium 71 3.4 Preparation of optical fiber 72 3.5 Solid carriers 73 3.6 Data analysis 75 3.7 Photo-bioreactor operation 76 3.7.1 Batch operation 76 3.7.2 CSTR operation 77 3.7.3 Fill and draw operation 77 3.8 Fabrication and operation of optical-fiber-illuminating photobioreactor 78 3.8.1 Optical fiber photo-bioreactor 78 3.8.2 Carrier-assisted optical fiber photo-bioreactor 80 3.8.3 Solar-energy-excited optical fiber photobioreactor 82 3.8.3.1 Set up of sunlight collecting devices 82 3.8.3.2 Set up of solar-energy-excited optical fiber photobioreactor 84 3.9 Experimental design for improving photo-H2 production 86 3.9.1 Operation of photobioreactor 86 3.9.2 Experimental design 88 3.9.3 Overlay contour plot 91 3.10 Analytical methods 91 3.10.1 Determination of cell concentration 91 3.10.2 Determination of dry cell weight (DCW) 91 3.10.3 Measurement of VFA concentration 92 3.10.4 Measurement of the gas products 92 3.10.5 Measurement of NH3-N 96 3.10.6 Estimation of Light intensity 96 3.10.7 Estimation of irradiation area 96 3.10.8 Estimation of Light conversion efficiency 97 Chapter 4 Photohydrogen Production by Rhodopseudomonas palustris WP3-5 Using Optical-Fiber-Illuminating Photobioreactors 99 4.1 Properties of the side-light optical fiber (SLOF) 99 4.2 Absorption spectrum of intact cells of R. palustris WP 3-5 and different light sources 102 4.3 Effect of single light source on photo-H2 production 104 4.4 Photo-H2 production using binary combinations of light sources 109 4.5 Biogas composition, substrate conversion, and H2 yield 114 4.6 Light conversion efficiency 116 4.7 Symmary 117 Chapter 5 Feasibility study for enhanced photo-H2 production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems 119 5.1 Photo-H2 production with different operation modes 119 5.2 Effect of HAc concentration on photo-H2 production during F/D operations 124 5.3 Effect of glutamic acid concentration on photo-H2 production during F/D operations 127 5.4 Effect of light source arrangement on photo-H2 production with F/D operations 131 5.5 Stability of photo-H2 production during long-term F/D operations 136 5.6 Overall evaluation of the photo-H2 production performance from this work 138 5.7 Summary 140 Chapter 6 Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination 141 6.1 Effect of solid carriers dosage on phototrophic H2 production 141 6.2 Effect of solid carriers on phototrophic H2 production 144 6.3 Effect of HAc concentration on phototrophic H2 production 148 6.4 Effect of optical fiber on phototrophic H2 production 153 6.5 Stability of photo-H2 production during CSTR operations 157 6.6 Performance assessment of the present phototrophic H2 production system 159 6.7 Summary 162 Chapter 7 Developing a solar energy excited optical fiber photobioreactor for phototrophic H2 production 163 7.1 Effect of solar-energy-excited optical fiber on phototrophic H2 production 163 7.2 Effect of scale up and light sources arrangement on phototrophic H2 production 169 7.3 Effect of light dependent resistor (LDR) added on phototrophic H2 production 174 7.4 Performance of photo-H2 production during CSTR operations 177 7.5 Performance assessment of the present phototrophic H2 production system 179 7.6 Summary 180 Chapter 8 Effect of volatile fatty acid concentration on phototrophic H2 production with Rhodopseudomonas palustris WP3-5 181 8.1 Effect of medium composition on maximum cumulative H2 evolution (Hmax) 182 8.2 Effect of medium composition on maximum H2 production rate (Rmax) 184 8.3 Effect of medium composition on H2 yield (Ryield) 186 8.4 Overlay contour plot for overall optimization of multiple response 189 8.5 Confirmation of predicted optimal performance and comparison with literature 193 8.6 Summary 194 Chapter 9 Hydrogen Production by Integrated Dark- and Photo-Fermentation 195 9.1 Dark-H2 production by Clostridium pasteurianum CH4 195 9.2 Photo-H2 production from soluble products of dark-H2 fermentation by Rhodopseudomonas palustris WP 3-5 196 9.3 Effect of optical fiber on phototrophic H2 production using dark-H2 fermentation effluents by Rhodopseudomonas palustris WP 3-5 200 9.4 Summary 204 Chapter 10 Conclusions 205 References 209 Appendix Curriculum vitae i

    Akkerman, I., Janssen, M., Rocha, J. and Wij1ffels, R.H. (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 27, 1195-1208.
    An, J.Y. and Kim, B.W. (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. Journal of Biotechnol 80, 35-44.
    Appel, J. and Schulz, R. (1998) Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising. J Photochem Photobiol B: Biology 47, 1-11
    Asada, Y. and Miyake, J. (1999) Photobiological hydrogen production. J Biosci Bioeng 88, 1-6.
    Asada, Y., Tokumoto, M., Aihara, Y., Oku, M., Ishimi, K., Wakayama, T., Miyake, J., Tomiyama, M. and Kohno, H. (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrogen Energy 31, 1509-1513.
    Barbosa, M.J., Rocha, J.M., Tramper, J. and Wijffels, R.H. (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnol 85, 25-33.
    Bass, M., Van, S. and Eric, W. (2002) Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications McGraw-Hill Telecom. New York McGraw-Hill Professional.
    Bates, R.J. (2001) Basic Fiberoptics Technologies. New York McGraw-Hill Professional.
    Benemann, J.R., Berenson, J.A., Kaplan, N.O. and Kamen, M.D. (1973) Hydrogen evolution by chloroplast-ferredoxin-hydrogenase system. Proc Natl Acad Sci USA 70, 2317-2320.
    Borodin, V.B., Tsygankov, A.A., Rao, K.K. and Hall, D.O. (2000) Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnol Bioeng 69, 478-485.
    Box, G.E.P. and Wilson, K.B. (1951) On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society Series B 13, 1-45.
    Burgess, J.G., Iwamoto, K., Takano, H. and Matsunaga, T. (1993) An optical fiber photoreactor for enhanced production of the marine unicellular alga isochrysis aff. galbana T-iso rich in dicosahexaenoic. Appl Microbiol Biotechnol 39, 456-459.
    Candioti, L.V., Robles, J.C., Mantovani, V.E. and Goicoechea, H.C. (2006) Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis. Talanta 69, 140-147.
    Carvalho, W., Santos, J.C., Canilha, L., Silva, J.B.A.e., Felipe, M.G.A., Mancilha, I.M. and Silva, S.S. (2004) A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem 39, 2135-2141
    Chen, C.Y. and Chang, J.S. (2006a) Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination. Process Biochem 41, 2041-2049.
    Chen, C.Y. and Chang, J.S. (2006b) Feasibility strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems. Int J Hydrogen Energy 31, 2345-2355.
    Chen, C.Y., Lee, C.M. and Chang, J.S. (2006) Photohydrogen production by Rhodopseudomonas palustris WP3-5 using optical-fiber-illuminating photobioreactors. Biochemical Engineering Journal 32, 33-42.
    Chen, C.Y., Lu, W.B., Wu, J.F. and Chang, J.S. (2007) Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int J Hydrogen Energy (doi: 10.1016/j.ijhydene.2006.09.021).

    Conrad, R. and Schlegel, H.G. (1977) Influence of aerobic and phototrophic growth conditions on the distribution of glucose and fructose carbon into the Entner-Doudoroff and Embden-Meyerhoff pathways in Rhodopseudomonas sphaeroides. J Gen Microbiol 101, 277-290.
    Das, D. and Veziroglu, T.N. (2001) Hydrogen production by biological processes:a survey of literature. Int J Hydrogen Energy 26, 13-28.
    Dunn, S. (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27, 235-264
    El-Shishtawy, R.M.A., Kawasaki, S. and Morimoto, M. (1997) Biological H2 production using a novel light-induced and diffused photoreactor. Biotechnol Techniq 11, 403-407.
    Fang, H. H. P.; Liu, H.; Zhang, T. (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 30, 785-793.
    Fang, H.H.P. and Yu, H.Q. (2002) Mesophilic acidification of gelatinaceous wastewater. Journal of Biotechnol 93, 99-108.
    Fang, H.H.P., Liu, H. and Zhang, T. (2002) Characterization of a hydrogenproducing granular sludge. Biotechnol Bioeng 78, 44-52.
    Fang, H.H.P., Liu, H. and Zhang, T. (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy 30, 785-793.
    Fang, H.H.P., Zhu, H. and Zhang, T. (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy 31, 2223-2230
    Fascetti, E. and Todini, O. (1995) Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat. Appl Microbiol Biotechnol 44, 300–305.
    Fascetti, E., D'addario, E., Todini, O. and Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int J Hydrogen Energy 23, 753-760.
    Fißler, J., Kohring, G.W. and Giffhorn, F. (1995) Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris. Appl Microbiol Biotechnol 44, 43-46.
    Fißler, J., Schirra, C., Kohring, G.W. and Giffhorn, F. (1994) Hydrogen production from aromatic acids by Rhodopseudomonas palustris. Appl Microbiol Biotechnol 41, 395-399.
    Francou, N. and Vignais, P.M. (1984) Hydrogen production by Rhodopseudomonas capsulate cells entrapped in carrageenan beads. Biotechnol Lett 6, 639-644.
    Gaffron, H. and Rubin, J. (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physicol, 219-240.
    Gest, H., Kamen, M.D. and Bregoff, H.M. (1950) Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J Biol Chem 182, 153-170.
    Ginkel, S.V., Sung, S. and Lay, J.J. (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35, 4726-4730.
    Gloe, A., Pfenning, N., Brockmann, H. and Trowitsh, W. (1975) A new bacterioichlorophyll from brown-colored chlorobiaceae. Arch Microbio 102, 103-109.
    Greenbaum, E. (1988) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54, 365-368.
    Hallenbeck, P.C. and Benemann, J.R. (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 27, 1185-1193.
    Hawkes, F.R., Dinsdale, R., Hawkes, D.L. and Huss, I. (2002) Sustainable fermentative hydrogen production: challenges for process optimization. Int J Hydrogen Energy 27, 1339-1347.
    He, D., Bultel, Y., Magnin, J.P. and Willison, J.C. (2006) Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter Capsulatus. Enzyme Microb Technol 38, 253-259.
    He, D., Bultel, Y., Magnin, J.P., Roux, C. and Willison, J.C. (2005) Hydrogen photosynthesis by Rhodobacter capsulatus and its coupling to a PEM fuel cell. Journal of Power Sources 141, 19-23.
    Henshaw, P.F. and Zeu, W. (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Wat Res 35, 3605-3610.
    Hillmer, P. and Gest, H. (1977a) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129, 724-731.
    Hillmer, P. and Gest, H. (1977b) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol 129, 732-739.
    Hofstadler, K., Bauer, R., Novallc, S. and Helsler, G. (1994) New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused silica glass fibers: Photomineralization of 4-Chlorophenol. Environ Sci Technol 28, 670-674.
    Hussy, I., Hawkes, F.R., Dinsdale, R. and Hawkes, D.L. (2005) Continuous fermentation hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30, 471-483.
    Ike, A., Murakawa, T., Kawaguchi, H., Hirata, K. and Miyamoto, K. (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88, 72-77.
    Imaizumi, A., Suzuki, Y., Ono, S. and Sato, H. (1983) Heptakis (2,6-O-dimethyl) β-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase. I J Clin Microbiol, 781-786.
    Imhoff, J.F. and Trüper, H.G. (2002) The genus Rhodospirillum and related Genera. pp.2141~2155 In: H. Balows, H. G. Trüper., M. Dworkin, W. Hareder and K. H. Schleifer (2nd ed.), The Prokaryotes,Vol. 3. Springer-Verlag, New York.
    Jones, B.L. and Monty, K.J. (1979) Glutamine as a feedback inhibitor of the Rhodopseudomonas sphaeroides nitrogenase system. J Bacteriol 139, 1007-1013.
    Kapdan, I.K. and Kargi, F. (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38, 569-582
    Kataoka, N., Miya, A. and Kiriyama, K. (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36, 41-47.
    Keasling, J.D., Benemann, J.R., Pramanik, J., Carrier, T.A., Jones, K.L. and Van Dien, S.J. (1997) A toolkit for metabolic engineering of bacteria: application to hydrogen production. In: O.R. Zaborski, J.R. Benemann, T. Matsunaga, J. Miyake and A. San Pietro, Editors, Biohydrogen, Plenum Press, New York, p. 87.
    Khanal, S.K., Chen, W.H., Li, L. and Sung, S. (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29, 1123-1131.
    Khatipov, E., Miyake, M., Miyake, J. and Asada, Y. (1998) Accumulation of poly-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett 162, 39-45.
    Kim, B.W., Chang, H.N., Kim, I.K. and Lee, K.S. (1992) Growth kinetics of the photosynthetic bacterium chlorobium thiosulfatophilum in a fed reactor. Biotechnol Bioeng 40, 583-592.
    Kim, B.W., Chang, K.P. and Chang, H.N. (1997) Effect of light source on the microbiological desulfurization in a photobioreactor. Bioprocess Eng 17, 343-348.
    Kim, E.J., Kim, J.S., Kim, M.S. and Lee, J.K. (2006a) Effect of changes in the level of light harvesting complexes of Rhodobacter sphaeroides on the photoheterotrophic production of hydrogen. Int J Hydrogen Energy 31, 531-538.
    Kim, J. S.; Ito, K.; Izaki, K.; Takabatake, H. (1987) Production of molecular hydrogen by a semi-continues outdoor culture of Rhodopseudomonas sphaeroides. Agric Biol Chem 51, (4), 1173-1174.
    Kim, J.S., Ito, K. and Takahashi, H. (1981) Production of molecular hydrogen by Rhodopseudomonas sp. J Ferment Technol 59, 185-190.
    Kim, J.S., Ito, K., Izaki, K. and Takabatake, H. (1987) Production of molecular hydrogen by a semi-continues outdoor culture of Rhodopseudomonas sphaeroides. Agric Biol Chem 51, 1173-1174.
    Kim, M.S., Baek, J.S., Yun, Y.S., Sim, S.J., Park, S. and Kim, S.C. (2006b) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process. Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31, 812-816.
    Kim, M.S., Lee, T.J., Yoon, Y.S., Lee, I.G. and Moon, K.W. (2001) Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photo-fermentation. In: J. Miyake, T. Matsunaga and A. San Pietro, Editors, Biohydrogen II: an approach to environmentally acceptable technology, Pergamon, Oxford, pp. 263-272.
    Kitajima, Y., El-Shishtawy, R.M.A., Ueno, Y., Otsuki, S., Miyake, J. and Morimoto, M. (1998) Analysis of compensation point of light using plane-type photosynthetic bioreactor. In: O. Zaborsky, Editor, Biohydrogen, Plenum Press, New York.
    Koku, H., Eroğlu, İ., Gündüz, U., Yücel, M. and Türker, L. (2002a) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. Int J Hydrogen Energy 27, 1315-1329.
    Koku, H., Eroğlu, İ., Gündüz, U., Yücel, M. and Türker, L. (2002b) Kinetics of biological hydrogen production by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 28, 381-388
    Kondo, T., Arakawa, M., Hirai, T., Wakayama, T., Hara, M. and Miyake, J. (2002a) Enhancement of hydrogen production by a photosynthetic bacterium mutant with reduced pigment. J Biosci Bioeng 93, 145-150.
    Kondo, T., Arakawa, M., Wakayama, T. and Miyake, J. (2002b) Hydrogen production by combining two types of photosynthetic bacteria with different characteristics. Int J Hydrogen Energy 27, 1303-1308.
    Kondo, T., Wakayama, T. and Miyake, J. (2006) Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. Int J Hydrogen Energy 31, 1522-1526.
    Kondratieva, E.N. (1976) Phototrophic micro-orgnisms as source of hydrogen and hydrogenase formation. In : H. G. Schlegel and J. Barnea (eds.), Microbial Energy Conversion, Erich Goltze KG, Göttingen.
    Krahn, E., Schneider, K. and Müller, A. (1996) Comparative characterization of H2 production by the conventional Mo nitrogenase and the alternative iron only nitrogenase of Rhodobacter capsulatus hup mutants. Appl Microbiol Biotechnol 46, 285-290.
    Kumar, N. and Das, D. (2001) Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29, 280-287.
    Laws, E.A., Taguchi, S., Hirata, J. and Pang, L. (1986) High algal production rates achieved in a shallow outdoor fume. Biotechnol Bioeng 28, 191-197.
    Lee, C.G. and Palsson, B. (1994) High density algal photoreactors using light emitting diodes. Biotechnol Bioeng 44, 1161-1167.
    Lee, C.M., Chen, P.C., Wang, C.C. and Tung, Y.C. (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27, 1309-1313.
    Lee, K.H. and Kim, B.W. (1998) Enhanced microbial removal of H2S using Chlorobium in an optical fiber bioreactor. Biotechnol Lett 20, 525-529.
    Lee, K.S., Lin, P.J. and Chang, J.S. (2006) Temperature effect on hydrogen fermentation in a granular sludge bed induced by activated carbon carrier. Int J Hydrogen Energy 31, 465-472.
    Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J. and Chang, J.S. (2003) Hydrogen fermentation with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol Lett 25, 133-138.
    Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J. and Chang, J.S. (2004a) Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb Technol 35, 605-612.
    Lee, K.S., Wu, J.F., Lin, P.J. and Chang, J.S. (2004b) Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol Bioeng 87, 648-657.
    Levin, D.B., Pitt, L. and Love, M. (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29, 173-185.
    Lin, C.Y. and Lay, C.H. (2004) Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 29, 275-281.
    Lodhi, M.A.K. (1987) Hydrogen production from renewable sources of energy. Int J Hydrogen Energy 12, 461-468.
    Mao, X.Y., Miyake, J. and Kawamura, S. (1986) Screening photosynthetic bacteria for hydrogen production from organic acids. J Ferment Technol 64, 245-249.
    Markov, S.A., Bazin, M.J. and Hall, D.O. (1995) Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzyme Microb Technol 17, 306-310.
    Markov, S.A., Rao, K.K. and Hall, D.O. (1993) A hollow fiber photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. Int J Hydrogen Energy, 901-906.
    Mason, C.A., Ward, G., Abu-Salah, K., Keren, O. and Dosoretz, C.G. (2000) Biodegradation of BTEX by bacteria on powdered activated carbon. Bioprocess Eng 23, 333-336.
    Matsumaga, T., Takeyama, H., Sudo, H., Oyama, N., Ariura, S., Takano, H., Hirano, M., Burgess, J.G., Sode, K. and Nakamura, N. (1991) Glutamate producrion from CO2 by marine cyanobacterium synechococcus sp. using a novel biosolar reactor empolying light diffusing optical fibers. Appl biochem biotechnol 28-29, 157-167.
    Matsunaga, T. and Okochi, M. (1995) TiO2-mediated photochemical disinfection of Escherichia coli using optical fibers. Environ Sci Technol 29, 501-505.
    Matsunaga, T., Hatano, T., Yamada, A. and Matsumoto, M. (2000) Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor. Biotechnol Bioeng 68, 647-651.
    Matthijs, H.C.P., Balke, H., Hes, U.M.v., Kroon, B.M.A., Mur, L.R. and Binot, R.A. (1996) Application of light emitting diodes in bioreactors flashing light effects and energy economy in algel culture. Biotechnol Bioeng 50, 98-107.
    Melis, A. and Melnicki, M.R. (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31, 1563-1575.
    Mignot, L., Junter, G.A. and Labbé, M. (1989) A new type of immobilized cell photoreactor with internal illumination by optical fiber. Biotechnol Techniq 3, 98-107.
    Miyake, J. and Kawamura, S. (1987) Efficiency of light energy conversion to hydrogen by the photosynethic bacterium Rhodobacter sphaeroides. Int J Hydrogen Energy 12, 147-149.
    Miyake, J., Mao, X.Y. and Kawamura, S. (1984) Photoproduction of hydrogen from glucose by a co-culture of a photosynethic bacterium and Clostridium butyricum. J Ferment Technol 62, 531-535.
    Miyake, J., Miyake, M. and Asada, Y. (1999a) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70, 89-101.
    Miyake, J., Tomizuk, N. and Kamibayashi, A. (1982) Prolonged photo-hydrogen production by Rhodospirillum rubrum. J Ferment Technol 60, 199–203.
    Miyake, J., Wakayama, T., Schnackenberg, J., Arai, T. and Asada, Y. (1999b) Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production. J Biosci Bioeng 88, 659-663.
    Momirlan, M. and Veziroglu, T. (1999) Recent directions of world hydrogen production. Energy Rev 3, 219-231.
    Montgomery, D.C. (2001) Design and analysis of experiments. 5th edition.
    Mu, Y., Wang, G. and Yu, H.Q. (2006) Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme Microb Technol 38, 905-913.
    Murata, H. (1996) Handbook of Optical Fibers and Cables Optical Engineering (Marcel Dekker, Inc.) V. 53: New York, N.Y. Marcel Dekker, Inc
    Nakada, E., Nishikata, S., Asada, Y. and Miyake, J. (1996) Hydrogen production by gel immobilized of Rhodobacter sphaeroides of cells pigments and hydrogen evolution. J Mar Biotechnol 4, 38-42.
    Nakada, E., Asada, Y., Arai, T. and Miyake, J. (1995) Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production. J Ferment Bioeng 80, 53-57.
    Nakada, E., Nishikata, S., Asada, Y. and Miyake, J. (1999) Photosynthetic bacterial hydrogen production combined with a fuel cell. Int J Hydrogen Energy 24, 1053-1057.
    Nandi, R. and Sengupta, S. (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24, 61-84.
    Ogbonna, J.C. and Tanaka, H. (1996) Night biomass loss and changes in biochemical composition of cells during light dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82, 558-564.
    Ogbonna, J.C., Soejima, T. and Tanaka, H. (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol 70, 289-297.
    Oh, Y.K., Seol, E.H., Kim, M.S. and Park, S. (2004) Photoproduction of hydrogen from HAc by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy 29, 1115-1121.
    OPEC. (2006) Organization of the Petroleum Exporting Countries. website: http://www.opec.org,.
    Orshansky, F. and Narkis, N. (1997) Characteristics of organics removal by PACT simultaneous adsorption and biodegradation. Wat Res 31, 391-398.
    Osborne, D.M. and Armacost, R.L. (1996) Review of techniques for optimizing multiple quality characteristics in product development. Computers & Industrial Engineering 31, 107-110.
    Otsuki, T., Uchiyama, S., Fujiki, K. and Fukunaga, S. (1998) Hydrogen production by a floating-type photobioreactor. In: Zaborsky, O.R., Editor, 1998. Biohydrogen, Plenum Press, London, pp. 369-374.
    Rao, K.K. and Hall, D.O. (1996) Hydrogen production by cyanobacteria: potential, problems and prospects. J Mar Biotechnol 4, 10-15.
    Redwood, M.D. and Macaskie, L.E. (2006) A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energy 31, 1514-1521
    Rosen, M.A. and Scott, D.S. (1998) Comparative efficiency assessments for a range of hydrogen production processes. Int J Hydrogen Energy 23, 653-659.
    Sasikala, K., Ramana, C.H.V. and Raghuveer, R.P. (1992) Photoproduction of hydrogen from the wastewater of a distillery by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 17, 23-27.
    Sasikala, K., Ramana, C.V. and R., R.P. (1991) Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy 16, 597-601.
    Sastri, M.V.C. (1989) India's hydrogen energy program-A status report. Int J Hydrogen Energy 14, 507-513
    Segers, L. and Verstraete, W. (1983) Conversion of organic acids to H2 by Rhodospirillaceae grown with glutamate or dinitrogen as nitrogen source. Biotechnol Bioeng 25, 2843-2853.
    Segers, L., Verstrynge, L. and Verstraete, W. (1981) Product patterns of non-axenic sucrose fermentation as a function of pH. Biotechnol Lett 3, 635-640.
    Shi, X.Y. and Yu, H.Q. (2005a) Optimization of glutamate concentration and pH for hydrogen production from volatile fatty acids by Rhodopseudomonas capsulata. Lett Appl Microbiol 40, 401-406.
    Shi, X.Y. and Yu, H.Q. (2005b) Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulate. Process Biochem 40, 2475-2481.
    Shi, X.Y. and Yu, H.Q. (2006a) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulate. Int J Hydrogen Energy 31, 1641-1647.
    Shi, X.Y. and Yu, H.Q. (2006b) Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulata. Int Biodeterioration Biodegradation 58, 82-88.
    Shoko, E., McLellan, B., Dicks, A.L. and C., D.d.C.J. (2006) Hydrogen from coal: Production and utilisation technologies. Int J Coal Geology 65, 213-222
    Singh, S.P., Srivastava, S.C. and Pandey, K.D. (1994) Hydrogen production by Rhodopseudomonas at the expense of vegetatable starch, sugar cane juice and whey. Int J Hydrogen Energy 19, 437-440.
    Stevens, P., Van Der Sypt, H., Vos, P.D. and Ley, J.D. (1983) Comparative on hydrogen evolution from DL-lactate acetate and butyrate by different strains of Rhodopseudomonas capsulate in a new type of reactor. Biotechnol Lett 5, 369-374.
    Stevens, P., Vertonghen, C., De Vos, P. and De Ley, J. (1984) The effect of temperture and light intensity on hydrogen production by different Rhodopseudomonas capsulta strains. Biotechnol Lett 6, 277-282.
    Stiegel, G.J. and Ramezan, M. (2006) Hydrogen from coal gasification: An economical pathway to a sustainable energy future. Int J Coal Geology 65, 173-190
    Sweet, W.J. and Burris, R.H. (1981) Inhibition of nitrogenase activity by NH+4 in Rhodospirillum rubrum. J Bacteriol 145, 824-831.
    Tabita, F.R. (1995) The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: R.E. Blankenship, M.T. Madigan and C.E. Bauer, Editors, Anoxygenic photosynthetic bacteria, Kluwer Academic Publishers, The Netherlands, 885-914.
    Takabatake, H., Suzuki, K., Ko, I.B. and Noike, T. (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresource Technol 95, 151-158.
    Takano, H., Furuune, H., Burgess, J.G., Manabe, E., Hirano, M., Okazaki, M. and Matsunaga, T. (1993) Production of ultrafine calcite particles by coccolithophorid algae grown in a biosolar reactor supplied with sunlight. Appl Biochem Biotechnol 39-40, 159-167.
    Takano, H., Takeyama, H., Nakamura, N., Sode, K., Burgess, J.G., Manabe, E., Hirano, M. and Matsumaga, T. (1992) CO2 removal by high-density culture of a marine cyanobacterium synechococcus sp. using an improved photobioreactor empolying light diffusing optical fibers. Appl Biochem Biotechnol 34, 449-458.
    Tao, Y., Chen, Y., Wu, Y., He, Y. and Zhou, Z. (2006) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrogen Energy 32, 200-206.
    Terry, K.L. and Raymond, L.P. (1985) System design for the autotrophic production of microalgae. Enzyme Microb Technol 7, 474-487.
    Thangaraj, A. and Kulandaivelu, G. (1994) Biological hydrogen photoproduction using dairy and sugar cane wastewater. Bioresour Technol 48, 9-12.
    Tsygankov, A.A., Fedorov, A.S., Laurinavichene, T.V., Gogotov, I.N., Rao, K.K. and Hall, D.O. (1998) Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Appl Microbiol Biotechnol 49, 102-107.
    Tsygankov, A.A., Hirata, Y., Asada, Y. and Miyake, J. (1993) Immobilization of the purple non-sulfur bacterium Rhodobacter sphaeroides on glass surfaces. Biotechnol Techniq 7, 283-286.
    Tsygankov, A.A., Hirata, Y., Miyake, M., Asada, Y. and Miyake, J. (1994a) Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction. J Ferment Bioeng 77, 575-578.
    Tsygankov, A.A., Laurinavichene, T.V. and Gogotov, I.N. (1994b) Laboratory scale photobioreactor. Biotechnol Techniq 8, 575-578.
    Türkarslan, S., Yücel, M., Gündüz, U., Türker, L. and Eroğlu, İ. (2002) Identification of hydrogenase from Rhodobacter species and hydrogen gas production in photobioreactors. In: Abstract Book, BioHydrogen Conference, Ede, The Netherlands, April
    Turner, J.A. (2004) Sustainable hydrogen production. Science 305, 972-974.
    Ueno, Y., Kawai, T., Sato, S., Otsuka, S. and Morimoto, M. (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79, 395-397.
    Verméglio, A. and Joliot, P. (1999) The photosynthetic apparatus of Rhodobacter sphaeroides - review. Trends in microbiol 435-440.
    Vignais, P.M., Colbeau, A., Willison, J.C. and Jouanneau, Y. (1985) Hydrogenase, nitrogenase and hydrogen metabolism in photosynthetic bacteria. Adv Microb Physiol 26, 154-234.
    Vincenzini, M., Balloni, W., Mannelli, D. and Florenzano, G. (1981) A bioreactor for continuous treatment of waste waters with immobilized cells of photosynthetic bacteria. Experientia 37, 710-712.
    Vincenzini, M., Materassi, R. and Florenzano Tredigi, M.R. (1982) Hydrogen production by immobilized cells-light dependent dissimilation of organic substrates by Rhodopseudomonas palustris. Int J Hydrogen Energy 7, 231-236.
    Wakayama, T. and Miyake, J. (2002) Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV. Int J Hydrogen Energy 27, 1495-1500.
    Weetall, H.H., Sharma, B.P. and Detar, C.C. (1981) Photo-metabolic production of hydrogen from organic substrates by immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae. Biotechnol Bioeng 23, 605-614.
    Willison, J.C. (1988) Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus. J Gen Microbiol 134, 2429-2439.
    Wikipedia, t.f.e. (2007) website:http://en.wikipedia.org/wiki/Optical_fiber.
    Woo, S.J., Lee, J.K., Kwon, T.J. and Kho, Y.H. (1985) Sanop Miseangmul Hakhoechi.
    Wu, J.F. and Chang, J.S. (2006) Biohydrogen production using starch as the carbon substrate. Master's Thesis Department of Chemical Engineering, National Cheng Kung University, Taiwan
    Wu, S.Y., Lin, C.N., Lee, K.S., Lin, P.J. and Chang, J.S. (2002) Microbial hydrogen production with immobilized anaerobic cultures. Biotechnol Prog 18, 921-926.
    Yakunin, A.F., Tsygankov, A.A., Troshina, O.Y. and Gogotov, I.N. (1991) Growth and nitrogenase activity of continuous cultures of the purple bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides depending on the presence of Mo, V, and W in the medium. Mikrobiyologiya 60, 41-46.
    Yamada, A., Takano, H., Burgess, J.G. and Matsunaga, T. (1996) Enhanced hydrogen production by a marine photosynthetic bacterium Rhodobacter marinus immobilized onto light diffusing optical fiber. J Mar Biotechnol 4, 23-27.
    Yamashita, M., Nakagawa, Y., Li, H. and Matsuyama, T. (2001) Silica gel-dependent production of prodigiosin and serrawettins by Serratia marcescens in a liquid culture. Microb Environ 16, 250-254.
    Yeh, M.S., Wei, Y.H. and Chang, J.S. (2005) Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnol Prog 21, 1329-1334.
    Yoch, D.C. and Gotto, J.W. (1982) Effect of light intensity and inhibitors of nitrogen assimilation on NH4+ inhibition of nitrogenase activity in Rhodospirillum rubrum and Anabaena sp. J Bacteriol 151, 800-806.
    Yokoi, H., Saitsu, A., Uchida, H., Hirose, J., Hayashi, S. and Takasaki, Y. (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91, 58-63.
    Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S. and Takasaki, Y. (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20, 143-147.
    Yu, K.M. and Lee, C.M. (2003) The study of limiting factor for the photo-hydrogen production with purple non-sulfate bacterium. Master's Thesis. Department of Biochemistry, National Chung Hsing University, Taiwan.
    Zhu, H., Suzuki, T., Tsygankov, A.A., Asada, Y. and Miyake, J. (1999) Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int J Hydrogen Energy 24, 305-310.
    Zhu, H., Wakayama, T., Asada, Y. and Miyake, J. (2002) Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrogen Energy 26, 1149-1154.
    Zürrer, H. and Bachofen, R. (1982) Aspects of growth and hydrogen production of the photosynthetic bacterium rhodospirillum rubbum in continuous culture. Biomass 2, 165-174.

    下載圖示 校內:2012-06-20公開
    校外:2012-06-20公開
    QR CODE