| 研究生: |
王煜 Wang, Yu |
|---|---|
| 論文名稱: |
操作參數對電紡聚(異丙基丙烯醯胺)/二甲基甲醯胺溶液所得液柱直徑分佈的影響 Effects of processing parameters on jet diameter profile in electrospinning of poly(N-isopropylacrylamide) solutions in dimethylformamide |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 電紡絲 、聚(異丙基丙烯醯胺) 、液柱直徑 |
| 外文關鍵詞: | electrospinning, poly(N-isopropylacrylamide), jet diameter |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以二甲基甲醯胺(DMF)為溶劑,配製不同濃度聚(異丙基丙烯醯胺)高分子(PNIPAM)溶液,量測溶液性質以決定overlap與糾結濃度和各濃度下的鬆弛時間。探討溶液黏度、流量與施加電壓對於電紡過程中泰勒錐(Taylor cone)/液柱/電紡纖維形態的影響。
定義針底中心為(z,x)=(0,0),以直徑為1 mm的雷射光束打擊電紡液柱不同位置,掃描不同位置的散射圖案,將第一個強度極大值的散射向量(qm,1)代入R.G.B.理論的式子:dj=10.22/qm,1,建構不同操作參數下的液柱直徑分佈圖。在泰勒錐-液柱區間內溶劑揮發可忽略的假設下計算得液柱速度分佈圖(vj(z)=4Q/dj(z)2),圖中斜率為液柱受到的拉伸速率。依拉伸速率的大小可在針底至液柱末端處之間分成三個區間,從針底至液柱起始處,液柱受到拉伸速率為最大值,直徑有明顯的變化,此為regime I,液柱內糾結結構的網路可被有效拉伸。液柱直徑隨距針底距離呈指數形式的縮減行為,關係式為dj(z)~z-n,為regime II。溶液黏度的改變對n值的影響最為明顯。液柱直徑會在近液柱末端處縮減至一漸近值(dj,e),此平坦區域為regime III,有鬆弛現象發生,regime III的存在可用液柱所受到的空氣阻力與電斥應力的力平衡來解釋,且由應力平衡推導所得結果(dj,e~Q0.41)與實驗結果相符合(~Q0.37),代表jet whipping行為是受電斥力與空氣阻力共同作用而形成的。dj,e受流量的影響,而幾乎與溶液黏度無關。
最後,以高速攝影機觀察電紡7、9與17 wt%溶液時,液柱在jet whipping起始區域中的運動行為,運動模式為波形外觀,只有17 wt%溶液存在高頻率與低頻率震動組成的週期性運動。分別量測不同濃度的液柱在側向與軸向上的運動速率。並量測波長與在軸向方向上的速率以計算液柱在此區間的運動頻率。探討溶液黏度對於運動行為與頻率的影響。
The electrospinning of poly(N-isopropylarylamide)/dimethylformamide (PNIPAM/DMF) solutions with various concentrations was performed at room temperature. Prior to electrospinning, the rheological properties were investigated which used to determine the relaxation time, solution viscosity, overlap and entanglement concentrations. In this study, we reveal the effects of solution properties and processing parameters on the morphologies of Taylor cone/jet/as-spun fibers.
Light scattering technique with He-Ne laser source was carried out to measure the jet diameter (dj(z)) at different positions (z) from needle-end to the jet-end position. The jet diameter profile was constructed from the magnitude of scattering vector of first intensity maximum (qm,1) which obtained from the equatorial intensity profiles by R.G.B. theory: dj(z)=10.22/qm,1. Based on the assumption that no solvent evaporation took place in the cone-jet region, the jet velocity (vj(z)) could be calculated by mass balance (vj(z)=4Q/dj(z)2). The slope in the jet velocity profiles represent the strain rate that applied on the electrospinning jet. According to the derived strain rate, three distinct regions could be identified. Regime I is from the needle-end to the initial jet section. The liquid element was stretched significantly by the highest strain rate in the straight jet section, thus the jet diameter decreased significantly in this region. Due to the high strain rates in regime I, the chain orientation even chain stretch may occur. Along the jet, dj keep decreasing as a scaling law: dj(z)~z-n in this range, which named region II. The derived exponent n is a function of solution viscosity, not a function of flow-rate and applied voltage. Near the jet-end position, jet diameter finally reached an asymptotic value (dj,e) despite of the parameters applied, named region III. Because the derived strain-rate in region III is around 0 s-1, the chain relaxation process would occur. The jet diameter on the jet-end (dj,e) is a function of flow-rate, but independent of solution viscosity. The existence of regime III could be explained by the force balance between air drag stress and electrical stress which induced by the surface charges on the jet in the electrical field. The derived result, dj,e~Q0.41, was consistent with our experimental results. Based on our finding, the resistant force by air friction is not negligible at the straight jet-end and progressively becomes the key factor in determining dj,e and the initial jet whipping behavior.
In the last section, we used a high speed camera to study the effect of solution viscosity on the vibration process of electrospinning jet in the initial jet whipping region for 7, 9 and 17 wt% solutions. There are wave-like morphologies for electrospinning jet in the initial jet whipping region despite of solution concentration. But only 17 wt% solution has a periodicity motion which composed by high frequency and low frequency vibrations. The effects of solution viscosity on the jet velocities on the lateral and axial directions and vibration frequency were investigated by the measurement of wavelength in wave-like motion and the jet velocity in the axial direction.
1. Tam, K. C.; Wu, X.-Y., Pelton, R. H., ”Viscometry-a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in solutions.”, Polymer 1992, 33, 436-438.
2. Schild, H. G., ”Poly(N-isopropylacrylamide): experiment, theory and application.”, Prog. Polym. Sci. 1992, 17, 163-249.
3. Wu, C.; Zhou, S., ”Volume phase transition of swollen gels: discontinuous or continuous?”, Macromolecules 1997, 30, 574-576.
4. Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y., “Pulsatile drug delivery systems using hydrogels.”, Adv. Drug. Deliv. Rev. 1993, 11, 85-108.
5. Yamato, M.; Akiyama, Y.; Kobayashi, J.; Yang, J.; Kikuchi, A.; Okano, T., “Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering.”, Prog. Polym. Sci. 2007, 32, 1123-1133.
6. Boutris, C.; Chatzi, E. G.; Kiparissides, C., “Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques.”, Polymer 1997, 38, 2567-2570.
7. Jaiswal, M. K.; Banerjee, R.; Pradhan, P.; Bahadur, D., “Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel.”, Colloids Surf., B:Biointerfaces 2010, 81, 185-194.
8. Zhang, J.; Misra, R. D. K., “Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response.”, Acta. Biomater. 2007, 3, 838-850.
9. Fujishige, S.; Kubota, K.; Ando, I., “Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide).”, J. Phys. Chem. 1989, 93, 3311-3313.
10. Gu, S.-Y.; Wang, Z.-M.; Li, J.-B.; Ren, J., “Switchable wettability of thermos-responsive biocompatible nanofibrous films created by electrospinning.”, Macromol. Mater. Eng. 2010, 295, 32-36.
11. Okada, Y.; Tanaka, F., “Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions.”, Macromolecules 2005, 38, 4465-4471.
12. Wu, C.; Wang, X., “Globule-to-coil transition of a single homopolymer chain in solution.”, Phys. Rev. Lett. 1998, 80, 4092-4094.
13. Fong, H.; Chun, I.; Reneker, D. H., “Beaded nanofibers formed during electrospinning.”, Polymer 1999, 40, 4585-4592.
14. Reneker, D. H.; Yarin, A. L., “Electrospinning jets and polymer nanofibers.”, Polymer 2008, 49, 2387-2425.
15. Greiner, A.; Wendorff, J. H., “Electrospinning: a fascinating method for the preparation of ultrathin fibers.”, Angew. Chem. Int. Ed. 2007, 46, 5670-5703.
16. Thompson, C. J.; Chase, G. G.; Yarin, A. L.; Reneker, D. H., “Effects of parameters on nanofiber diameter determined from electrospinning model.”, Polymer 2007, 48, 6913-6922.
17. Wang, C.; Cheng, Y.-W.; Hsu, C.-H.; Chien, H.-S.; Tsou, S.-Y., “How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?-a brief discussion of solution electrospinning process.”, J. Polym. Res. 2011, 18, 111-123
18. Burger, C.; Hsiao, B. S.; Chu, B., “Nanofibrous materials and their applications.”, Annu. Rev. Mater. Res. 2006, 36, 333-368.
19. Still, T. J.; Recum, H. A., “Electrospinning: applications in drug delivery and tissue engineering.”, Biomater 2008, 29, 1989-2006.
20. Reneker, D. H.; Chun, I., “Nanometre diameter fibres of polymer, produced by electrospinning.”, Nanotechnology 1996, 7, 216-223.
21. Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites.”, Compos. Sci. Technol. 2003, 63, 2223-2253.
22. Mckee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E., “Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters.”, Macromolecules 2004, 37, 1760-1767.
23. Klossner, R. R.; Queen, H. A.; Coughlin, A. J.; Krause, W. E., “Correlation of Chitosan’s rheological properties and its ability to electrospin.”, Biomacromolecules 2008, 9, 2947-2953.
24. Rockwood, D. N.; Chase, D. B.; Akins, R. E., Jr.; Rabolt, J. F., “Characterization of electrospun poly(N-isopropyl acrylamide) fibers.”, Polymer 2008, 49, 4025-4032.
25. Okuzaki, H.; Kobayashi, K.; Yan, H., “Non-woven fabric of poly(N-isopropylacrylamide) nanofibers fabricated by electrospinning.”, Synth.Met.2009, 159, 2273-2276.
26. Okuzaki, H.; Kobayashi, K.; Yan, H., “Thermo-responsive nanofiber mats.”, Macromolecules 2009, 42, 5916-5918.
27. Konosu, Y.; Matsumoto, H.; Tsuboi, K.; Minagawa, M.; Tanioka, A., “Enhancing the effect of the nanofiber network structure on thermoresponsive wettability switching.”, Langmuir 2011, 27, 14716-14720.
28. Wang, J.; Sutti, A.; Wang, X.; Lin, T., “Fast responsive and morphologically robust thermo-responsive hydrogel nanofibres from poly(N-isopropylacrylamide) and POSS crosslinker.”, Soft Matter 2011, 7, 4364-4369.
29. Wang, N.; Zhao, Y.; Jiang, L., “Low-cost, thermoresponsive wettability of surfaces: poly(N-isopropylacrylamide)/polystyrene composite films prepared by electrospinning.”, Macromol. Rapid. Commun. 2008, 29, 485-489.
30. Song, F.; Wang, X.-L.; Wang, Y.-Z., “Poly(N-isopropylacrylamide)/ poly(ethylene oxide) blend nanofibrous scaffolds: thermos-responsive carrier for controlled drug release.”, Colloids Surf., B: Biointerfaces 2011, 88, 749-754.
31. Chen, M.; Dong, M.; Havelund, R.; Regina, V. R.; Meyer, R. L.; Basenbacher, F.; Kingshott, P., “Thermo-responsive core-sheath electrospun nanofibers from poly(N-isopropylacrylamide)/ polycaprolactone blends.”, Chem. Mater. 2010, 22, 4214-4221.
32. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning.”, J. Appl. Phys. 2000, 87, 4531-4547.
33. Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C., “Experimental characterization of electrospinning: the electrically forced jet and instabilities.”, Polymer 2001, 42, 9955-9967.
34. Fridrikh, S. V.; Yu, J. H.; Brenner, M. P.; Rutledge, G. C., “Controlling the fiber diameter during electrospinning.”, Phys. Rev. Lett. 2003, 90, 144502.
35. Feng, J. J., “Stretching of a straight electrically charged viscoelastic jet.”, J. Non-Newtonian Fluid Mech. 2003, 116, 55-70.
36. Feng, J. J., “The stretching of an electrified non-Newtonian jet: a model for electrospinning.”, Phys. Fluid 2002, 14, 3912-3926.
37. Gaňán-Calvo, A. M., “Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying.”, Phys. Rev. Lett. 1997, 79, 217-220.
38. Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C., “The role of elasticity in the formation of electrospun fibers.”, Polymer 2006, 47, 4789-4797.
39. Sahay, R.; Teo, C. J.; Chew, Y. T., “New correlation formulae for the straight section of the electrospun jet from a polymer drop.”, J. Fluid Mech. 2013, 735, 150-175.
40. Helgeson, M. E.; Grammatikos, K. N.; Deitzel, J. M.; Wagner, N. J., “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets.”, Polymer 2008, 49, 2924-2936.
41. Greenfeld, I.; Arinstein, A.; Fezzaa, K.; Rafailovich, M. H.; Zussman, E., “Polymer dynamics in semidilute solution during electrospinning: a simple model and experimental observations.”, Phys. Rev. E. 2011, 84, 041806.
42. Greenfeld, I.; Fezzaa, K.; Rafailovich, M. H.; Zussman, E., “Fast X-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity and concentration.”, Macromolecules 2012, 45, 3616-3626.
43. Khodier, S. A., “Measurement of wire diameter by optical diffraction.”, Opt. Laser Technol. 2004, 36, 63-67.
44. Doshi, J.; Reneker, D. H., “Electrospinning process and applications of electrospun fibers.”, J. Electron. 1995, 35, 151-160.
45. Wang, C.; Chien, H.-S.; Yan, K.-W.; Hung, C.-L.; Hung, K.-L.; Tsai, S.-J.; Jhang, H.- J., “Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers.”, Polymer 2009, 50, 6100-6110.
46. Wang, C.; Chien, H.-S.; Hsu, C.-H.; Wang, Y.-C.; Wang, C.-T.; Lu, H.-A., “Electrospinning of polyacrylonitrile solutions at elevated temperatures.”, Macromolecules 2007, 40, 7973-7983.
47. Wang, C.; Hsu, C.-H.; Lin, J.-H., “Scaling laws in electrospinning of polystyrene solutions.”, Macromolecules 2006, 39, 7662-7672.
48. Wang, C.; Lee, M.-F.; Wu, Y.-J., “Solution-electrospun poly(ethylene terephthalate) fibers: processing and characterization.”, Macromolecules 2012, 45, 7939-7947.
49. Gucker, F. T.; Cohn, S. H., “Numerical evaluation of the Mie scattering functions; table of the angular functions n and n of orders 1 to 32, at 2.5o intervals.”, J. Colloid Sci. 1953, 8, 555-574.
50. Heller, W.; Epel, J. N.; Tabibian, R. M., “Experimental verification of the Mie theory of light scattering.”, J. Chem. Phys. 1954, 22, 1777-1778.
51. Uemura, Y.; Fujimura, M.; Hashimoto, T.; Kawai, H., “Application of light scattering from dielectric cylinder based upon Mie and Rayleigh-Gans-Born theories to polymer systems. I. Scattering from a glass fiber.”, Polym. J. 1978, 10, 341-351.
52. Lundberg, J. T., “Light scattering from large fibers at normal incidence.”, J. Collid Interface Sci. 1969, 29, 565-583.
53. Reneker, D. H.; Yarin, A. L.; Zussman, E.; Xu, H., “Electrospinning of nanofibers from polymer solutions and melts.”, Adv. Appl. Mech. 2007, 41, 43-195.
54. Han, T.; Yarin, A. L.; Reneker, D. H., “Viscoelastic electrospun jets: initial stresses and elongational rheometry.”, Polymer 2008, 49, 1651-1658.
55. Kong, C. S.; Choi, S. J.; Lee, H. S.; Kim, H. S., “Observation of electrospinning behavior of nanoscale fibers by a high-speed camera.”, J. Macromol. Sci., B. 2016, 55, 201-210.
56. Xu, H.; Yarin, A. L.; Reneker, D. H., “Characterization of fluid flow in jets during electrospinning.”, Polym. Preprints 2003, 44, 51-52.
57. Hosoya, K.; Sawada, E.; Kimate, K.; Araki, T.; Tanaka, N.; Frechet, J. M. J., “In situ surface-selective modification of uniform size macroporous polymer particles with temperature-responsive poly-N-isopropylacrylamide.”, Macromolecules 1994, 27, 3973-3976.
58. Wang, C.; Wang, Y.; Hashimoto, T., “Impact of entanglement density on solution electrospinning: a phenomenological model for fiber diameter.”, Macromolecules 2016, 49, 7985-7996.
59. Zeng, F.; Tong, Z.; Sato, T., “Molecular chain properties of poly(N-isopropyl acrylamide).”, Sci. China, Ser. B: Chem. 1999, 42, 290-297.
60. 王煜,”電紡製備生物可相容性聚(異丙基丙烯醯胺)奈米纖維膜”,國立成功大學碩士論文 (2013).
61. Van de Hulst, H. C. “Light scattering by small particels”, John Wiley & Sons, Inc,. New York, 1957.
62. Edlén, B., “The refractive index of air.”, Metrologia 1966, 2, 71-80.
63. Birch, K. P.; Downs, M. J., “An updated Edlen equation for the refractive-index of air.”, Metrologia 1993, 30, 155-162.
64. Bohren, C. F.; Huffman, D. R. “Absorption and scattering of light by small particles”, John Wiley & Sons, Inc,. New York, 1983.
65. Pantano, C.; Gañán-Calvo, A. M.; Barrero, A., “Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode.”, J. Aerosol. Sci. 1994, 25, 1065-1077.
66. Wang, C.; Jheng, J.-H.; Chiu, F.-C., “Electrospun nylon-4,6 nanofibers: solution rheology and Brill transition.”, Colloid Polym. Sci. 2013, 291, 2337-2344.
67. Rubinstein, M.; Colby, R. H.; Dobrynin, A. V., “Dynamics of semidilute polyelectrolyte solutions.”, Phys. Rev. Lett. 1994, 73, 2776-2779.
68. Rubinstein, M.; Colby, R. H. “Polymer Physics”, Oxford University Press: London, 2003.
69. de Gennes, P. G. “In scaling concepts in polymer physics”. Cornell University Press, Ithaca, 1979.
70. Takahashi, Y.; Isono, Y.; Noda, I.; Nagasawa, M., “Zero-shear viscosity of linear polymer solutions over a wide range of concentration.”, Macromolecules 1985, 18, 1002-1008.
71. Pearson, D. S., “Recent advances in the molecular aspects of polymer viscoelasticity.”, Rubber Chem. Technol. 1987, 60, 439-496.
72. Kirichenko, V. N.; Petrianovsokolov, I. V.; Suprun, N. N.; Shutov, A. A., “Asymptotic radius of slightly conducting liquid jet in an electric-field.”, Dokl. Akad. Nauk SSSR 1986, 289, 817−820.
73. Spivak, A. F.; Dzenis, Y. A., “Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field.”, Appl. Phys. Lett. 1998, 73, 3067−3069.
74. Subbotin, A.; Stepanyan, R.; Chiche, A.; Slot, J. J. M.; ten Brinke, G., “Dynamics of an electrically charged polymer jet.”, Phys. Fluids 2013, 25, 103101.
75. Sinclair, D., “Light scattering by spherical particles.”, J. Opt. Soc. Am. 1947, 37, 475-480.
76. 陳冠傑,”電紡聚(異丙烯丙烯醯胺)/聚乙烯醇混摻水溶液”,國立成功大學碩士論文 (2016)。
77. 李政霖,”含電紡同排聚苯乙烯纖維/聚丙烯復材之製備與熱性質”,國立成功大學碩士論文 (2016)。
78. Wu, X.-F.; Salkovskiy, Y.; Dzenis, Y. A., “Modeling of solvent evaporation from polymer jets in electrospinning.”, Appl. Phys. Lett. 2011, 98, 223108.
79. Tao, H.; Huang, C.- I.; Lodge, T. P., “Correlation length and entanglement spacing in concentrated hydrogenated polybutadiene solutions.”, Macromolecules 1999, 32, 1212−1217.
80. Sridhar, T.; Acharya, M.; Nguyen, D. A.; Bhattacharjee, P. K., “On the extensional rheology of polymer melts and concentrated solutions.”, Macromolecules 2014, 47, 379−386.
81. Tirtaatmadja, V.; Sridhar, T., “A filament stretching device for measurement of extensional viscosity.”, J. Rheol. 1993, 37, 1081−1102.
82. Larson, R. G.; Desai, P. S., “Modeling the rheology of polymer melts and solutions.”, Annu. Rev. Fluid Mech. 2015, 47, 47-65.
83. Liu, C.-Y.; He, J.-S.; Ruymbeke, E. V.; Keunings, R.; Bailly, C., “Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight.”, Polymer 2006, 47, 4461-4479.
84. Simha, R.; Boyer, R. F., “On a general relation involving the glass temperature and coefficients of expansion of polymers.”, J. Chem. Phys. 1962, 37, 1003-1007.
85. Osaki, K.; Inoue, T.; Uematsu, T.; Yamashita, Y., “Evaluation methods of the longest Rouse relaxation time of an entangled polymer in a semidilute solution.”, J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 1704−1712.
86. Menezes, E. V.; Graessley, W. W., “Nonlinear rheological behavior of polymer systems for several shear-flow histories.”, J. Polym. Sci., Polym. Phys. Ed. 1982, 20, 1817−1833.
87. Rezenom, Y. H.; Wellman, A. D.; Tilstra, L.; Medley, C. D.; Gilman, S. D., “Separation and detection of individual submicron particles by capillary electrophoresis with laser-light-scattering detection.”, Analyst 2007, 132, 1215-1222.
88. Zarrin, F.; Risfelt, J. A.; Dovichi, N. J., “Light scatter detection within the sheath flow cuvette for size determination of multicomponent submicrometer particle suspensions.”, Anal. Chem. 1987, 59, 850-854.
89. Han, T.; Reneker, D. H.; Yarin, A. L., “Buckling of jets in electrospinning.”, Polymer 2007, 48, 6064-6076.
90. Bos, C., “A sublayer description for the air friction acting on thin filaments during melt spinning.”, Int. J. Heat Mass Transfer. 1988, 31, 167-176.
91. Shimizu, J.; Okui, N.; Tamai, K., “Air drag in high speed melt spinning.”, Sen-I Gakkaishi 1983, 39, 398-407.
92. Beyreuther, R.; Brünig, H. “Dynamics of fibre formation and processing”, Spring New York, USA, 2006, 56-59.
93. Gould, J.; Smith, F. S., “Air-drag on synthetic-fibre textile monofilaments and yarns in axial flow at speeds of up to 100 metres per second.”, J. Textile Inst. 1980, 71, 38-49.
94. Matsui, M., “Air drag on a continuous filament in melt spinning.”, Trans. Soc. Rheol. 1976, 20, 465-474.