| 研究生: |
郭虹萱 Kuo, Hong-Syuan |
|---|---|
| 論文名稱: |
血管收縮素II及其第一型受體於奈米微粒誘發肺損傷所扮演的角色 The role of angiotensin II/AT1R signaling in nanoparticles-induced pulmonary injury |
| 指導教授: |
張志欽
Chang, Chih-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 奈米微粒 、血管收縮素II 、血管收縮素II第一型受體 、血管內皮生長因子 |
| 外文關鍵詞: | Nanoparticles, AngII, AT1R, VEGF |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前流行病學證據指出不論是短期或長期暴露於細懸浮微粒下,皆會增加罹患肺部和心血管疾病伴隨血壓增加的風險;動物實驗也證實暴露細懸浮微粒會造成肺部損傷和血管內皮功能失調。此外,空氣中所含的細懸浮微粒粒子數最多的是超細微粒或奈米微粒,先前本實驗室證明奈米碳黑 (14 nm)誘發血管內皮生長因子,造成肺泡-微血管通透性增加及肺水腫。血管收縮素II參與內皮功能失調、高血壓等病態生理的發展及調控血管內皮生長因子的表現,目前對於血管收縮素II及其第一型受體於奈米微粒誘發肺部損傷中所扮演的角色還尚未明瞭。
為探討血管收縮素II及其第一型受體於奈米微粒誘發肺部損傷所扮演的角色,利用SD公鼠以口咽吸入法,重複暴露4 mg/kg的奈米碳黑、奈米銀及奈米二氧化鈦(每96小時暴露一次,共三次),於最後一次暴露96小時後犧牲,採其血液、肺沖提液以酵素連結免疫法分析發炎及內皮損傷指標,接著利用肺均質液進行流式細胞儀分析肺泡二型上皮細胞,最後收其組織進行包埋及切片染色。
結果顯示暴露奈米碳黑、奈米銀和奈米二氧化鈦造成肺沖提液中總蛋白量和血管內皮生長因子顯著增加,組織切片染色和流式細胞儀分析結果顯示肺水腫和肺泡二型上皮細胞不正常的增加,這結果顯示暴露奈米微粒會造成肺部損傷。血漿血管收縮素II及血清血管內皮生長因子、細胞間黏附分子、E-選擇素的表現量增加,為進一步驗證血管收縮素II經由其第一型受體於奈米微粒引起肺部損傷之貢獻,於暴露前30分鐘腹腔注射血管收縮素II第一型受體拮抗劑Losartan能夠有效降低肺部損傷和血清血管內皮生長因子和細胞間黏附分子的表現量,此外血清血管內皮生長因子和細胞間黏附分子的增加分別和肺泡二型上皮細胞的增加具有顯著相關性,以上結果可知血管收縮素II及其第一型受體參與調控奈米微粒誘發肺損傷,Losartan拮抗劑能使奈米微粒誘發肺損傷和血管內皮生長因子及細胞間黏附分子之表現量顯著下降,此外,血清血管內皮生長因子和細胞間黏附分子可能為奈米微粒誘發肺部損傷之生物指標。未來將持續研究血管收縮素II及其第一型受體訊息於奈米微粒誘發肺損傷和內皮功能失調所扮演的角色。
We aimed to investigate the role of Angiotensin II (AngII) and its receptor signaling in nanoparticles-induced pulmonary injury and their potential as biomarkers for early injury detection. SD rats were oropharyngeally aspirated (3 times, at 96 hr interval) with 4 mg/kg ultrafine carbon black (ufCB), nano Ag (AgNPs) and nano TiO2. The results indicate that exposure to ufCB, AgNPs and TiO2 caused significant increases of total proteins and VEGF. Histological examination and flow cytometry demonstrated significant pulmonary edema and proliferation of SPC+ alveolar type II cells, respectively. These are indicators of pulmonary injury. Plasma AngII, serum VEGF, ICAM-1 and E-selectin were also significantly elevated. Pretreatment with Ang II type I receptor (AT1R) antagonist losartan caused significant reductions in pulmonary injury, and serum VEGF and ICAM-1. Importantly, there were significant correlations between serum VEGF or ICAM-1 and pulmonary percent SPC+PCNA+ cells. Thus, our results demonstrate that AngII and its receptor signaling play a role in nanoparticles-induced pulmonary injury, and serum VEGF and ICAM-1 may serve as an indicator of pulmonary injury upon exposure.
張志欽、林洺秀: 以動物實驗驗證奈米微粒至肺損傷之健康危害。行政院勞工委員會勞工安全衛生研究所2014年1月。
Althaus M, Clauss WG, and Fronius M. Amiloride-Sensitive Sodium Channels and Pulmonary Edema. Pulmonary Medicine. 830320 (2011).
Anderson M, Svartengren M, Philipson K and Regional PC. Human lung deposition Studied by repeated investigations. J. Aerosol Sei. 19(7):1121-1124 (1988).
Andre E, Stoeger T, Takenaka S, Bahnweg M, Ritter B, Karg E Lentner B, Reinhard C, Schulz H, Wjst M. Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. Eur Respir J. 28(2):275-85 (2006).
Bai R, Zhang L, Liu Y, Meng L, Wang L, Wu Y, Li W, Ge C, Le Guyader L, Chen C. Pulmonary responses to printer toner particles in mice after intratracheal instillation. Toxicol Lett. 199: 288-300 (2010).
Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, and Everitt JI. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol. Sci. 70, 86-97 (2002).
Berthiaume Y and Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respiratory Physiology & Neurobiology. 159:350–359 (2007).
BéruBé K, Balharry D, Sexton K, Koshy L, Jones T. Combustion-derived Nanoparticles: Mechanisms of Pulmonary Toxicity. Clin Exp Pharmacol Physiol. 34:1044–1050 (2007).
Beutler KT, Masilamani S, Turban S, Nielsen J, Brooks HL, Ageloff S, Fenton RA, Packer RK, Knepper MA. Long-term regulation of ENaC expression in kidney by angiotensin II. Hypertension. 41:1143-1150 (2003).
Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol. 11:49 (2014).
Brasier AR, Recinos A 3rd, Eledrisi MS. Vascular Inflammation and the Renin-Angiotensin System. Arterioscler Thromb Vasc Biol. 22(8):1257-1266 (2002).
Brook RD and Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens. 3(5):332-350 (2009).
Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I. Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 109:2655-2671 (2004).
Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C, Phillips M, Rodes C, Thornburg J, Williams R. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med 68(3):224-30 (2011).
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y,Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation. 2331-2378 (2010).
Buharalioglu CK, Song CY, Yaghini FA, Ghafoor HU, Motiwala M, Adris T, Estes AM, Malik KU. Angiotensin II-induced process of angiogenesis is mediated by spleen tyrosine kinase via VEGF receptor-1 phosphorylation. Am J Physiol Heart Circ Physiol. 301:1043-1055 (2011).
Chang CC, Chiu HF, Wu YS, Li YC, Tsai ML, Shen CK, Yang CY. The induction of vascular endothelial growth factor by ultrafine carbon black contributes to the increase of alveolar-capillary permeability. Environ Health Perspect. 113:454-460 (2005).
Chang CC, Chiu JJ, Chen SL, Huang HC, Chiu HF, Lin BH, Yang CY. Activation of HGF/c-Met signaling by ultrafine carbon particles and its contribution to alveolar type II cell proliferation. Am J Physiol Lung Cell Mol Physiol Jan. 302: L755-L763 (2012).
Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC, Chen JJ, Yang PC. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J. 2393-5(2006).
Corvol P, Michaud A, Soubrier F, Williams TA. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens Suppl. 13(3):3-10 (1995).
Davel AP, Lemos M, Pastro LM, Pedro SC, de André PA, Hebeda C, Farsky SH, Saldiva PH, Rossoni LV. Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology. 295(1-3):39-46 (2012).
Deng J, Wang DX, Deng W, Li CY, Tong J: The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury. Can Respir J. 19(5):311-318 (2012)a
Deng J, Wang DX, Deng W, Li CY, Tong J, Ma H. Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II. Respir Physiol Neurobiol. 181(1):53-61 (2012)c.
Deng W, Li CY, Tong J, Zhang W and Wang DX. Regulation of ENaC-mediated alveolar fluid clearance by insulin via PI3K/Akt pathway in LPS-induced acute lung injury. Respiratory Research. 13:29 (2012)b.
Dezsö B, Nielsen AH, Poulsen K. Identification of renin in resident alveolar macrophages and monocytes: HPLC and immunohistochemical study. J Cell Sci. 91:155-159 (1988).
Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM. Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res. 81:970-976 (1997).
Dvonch JT, Kannan S, Schulz AJ, Keeler GJ, Mentz G, House J, Benjamin A, Max P, Bard RL, Brook RD. Acute effects of ambient particulate matter on blood pressure: differential effects across urban communities. Hypertension 53(5):853-9 (2009).
Eeden SV, Leipsic J, Paul-Man SF, and Sin DD. The Relationship between Lung Inflammation and Cardiovascular Disease. Am J Respir Crit Care Med. 186:11-16 (2012).
Esteban V, Lorenzo O, Ruperez M. Angiotensin II via AT1R and AT2R receptors and NFκB pathway regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 15:1514-1529 (2004).
Farina F, Sancini G, Battaglia C, Tinaglia V, Mantecca P, Camatini M, Palestini P. Milano Summer Particulate Matter (PM10) Triggers Lung Inflammation and Extra Pulmonary Adverse Events in Mice. PLoS One. 8(2):e56636 (2013).
Ghelfi E, Wellenius GA, Lawrence J, Millet E, Gonzalez-Flecha B. Cardiac Oxidative Stress and Dysfunction by Fine Concentrated Ambient Particles (CAPs) are Mediated by Angiotensin II. Inhal Toxicol. 22(11): 963-972 (2010).
Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K. Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol. 195(1):35-44 (2004).
Goyal R, Leitzke A, Goyal D, Gheorghe CP, Longo LD. Antenatal Maternal Hypoxic Stress: Adaptations in Fetal Lung Renin-Angiotensin System. Reprod Sci.. 18(2):180-189 (2011).
Grassian VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 115(3):397-402 (2007).
Hall JE. Historical Perspective of the Renin-Angiotensin System. Mol Biotechnol. 24(1):27-39 (2003).
Hao Q, Chen X, Wang X, Dong B, Yang C. Curcumin attenuates angiotensin II-induced abdominal aortic aneurysm by inhibition of inflammatory response and ERK signaling pathways. Evid Based Complement Alternat Med. 270930 (2014).
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physio. 305(10):L665-81 (2013).
Hext PM, Tomenson JA, Thompson P. Titanium dioxide: inhalation toxicology and epidemiology. Ann. Occup. Hyg. 49: 461-472 (2005).
Hilgenfeldt U, Kienapfel G, Kellermann W, Schott R, Schmidt M: Renin-angiotensin system in sepsis. Clin Exp Hypertens A. 9:1493-1504 (1987).
Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 12:43 (2013).
Hu C, Dandapat A, Mehta JL. Angiotensin II Induces Capillary Formation From Endothelial Cells Via the LOX-1-Dependent Redox-Sensitive Pathway. Hypertension. 50:952-957 (2007).
Hyun JS, Lee BS, Ryu HY, Sung JH, Chung KH, Yu IJ. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett. 182:24-8 (2008).
IARC. Carbon black, titanium dioxide, and talc. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 93. World Health Organization, International Agency for Research on Cancer, pp. 1-413 (2010).
Imai Y, Kuba K, Penninger J. The renin-angiotensin system in acute respiratory distress syndrome. Drug Discov Today. 3:225 (2006).
Ismael-Badarneh R, Guetta J, Klorin G, Berger G, Abu-Saleh N, Abassi Z, Azzam ZS. The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport. PLoS ONE. 10(7):e0134175 (2015).
Jerng JS, Hsu YC, Wu HD, Pan HZ, Wang HC, Shun CT. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax. 62:527-35 (2007).
Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH,Sung JH, Song KS, Yu IJ. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 19:857-871 (2007).
Jia X, Hao Y, Guo X.. Ultrafine carbon black disturbs heart rate variability in mice. Toxicol Lett. . 211:274-280 (2012).
Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG. Lung Overexpression of the Vascular Endothelial Growth Factor Gene Induces Pulmonary Edema. Am. J. Respir. Cell Mol. Biol. 22:657-664 ( 2000).
Kido T, Tamagawa E, Bai N, Suda K, Yang HH, Li Y, Chiang G, Yatera K, Mukae H, Sin DD, Van Eeden SF. Particulate Matter Induces Translocation of IL-6 from the Lung to the Systemic Circulation. Am J Respir Cell Mol Biol. 44:197-204 (2011).
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results. Toxicology. 264:110-118 (2009).
Laden F, Schwartz J, Speizer FE, Dockery DW. Reduction in Fine Particulate Air Pollution and Mortality. Am J Respir Crit Care Med. 173(6):667-672 (2006).
Layachi S, Rogerieux F, Robidel F, Lacroix G, Bayat S. Effect of combined nitrogen dioxide and carbon nanoparticle exposure on lung function during ovalbumin sensitization in Brown Norway rat. PloS One. 7:e45687 (2012).
Li J, Li Q, Xu J, Li J, Cai X, Liu R, Li Y, Ma J, Li W. Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ Toxicol Phar. 24:239-44 (2007).
Li Y, Li J, Yin J, Li W, Kang C, Huang Q, Li Q: Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol. 10:8544 -8549 (2010).
Lin LY, Lin CY, Lin YC, Chuang KJ. The effects of indoor particles on blood pressure and heart rate among young adults in Taipei, Taiwan. Indoor Air 19:482-8. (2009)
Liu H, Yang D, Yang H, Zhang H, Zhang W, Fang Y, Lin Z, Tian L, Lin B, Yan J, Xi Z. Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: Silver, zinc oxide and titanium dioxide. J J Hazard Mater. 248-249:478-486 (2013).
Liu L, Qiu HB, Yang Y, Wang L, Ding HM, Li HP. Losartan, an antagonist of AT1 receptor for angiotensin II, attenuates lipopolysaccharide-induced acute lung injury in rat. Arch Biochem Biophys. 481:131 (2009).
Lucas R, Sridhar S, Rick FG, Gorshkov B, Umapathy NS, Yang G, Oseghale A, Verin AD, Chakraborty T, Matthay MA, Zemskov EA, White R, Block NL, Schally AV. Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema. Proc Natl Acad Sci U S A. 109(6):2084-2089 (2012).
Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, Landsiedel R: Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol. 21:102-118 (2009).
Majumder K and Wu J. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension. Int. J. Mol. Sci. 16:256-283 (2015).
Marchesi C, Paradis P and Schiffrin EL. Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci. 29:367–374 (2008).
Marumo T, Schini-Kerth VB and Busse R. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes. 48:1131–1137 (1999).
Matthay MA, Robriquet L, Fang X. Alveolar Epithelium: Role in Lung Fluid Balance and Acute Lung Injury. Proc Am Thorac Soc. 2:206–213 (2005).
Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandström T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. Nature Clinical Practice. Cardiovascular Medicine. 6:36–44 (2009).
Montiel-Dávalos A, Ventura-Gallegos J, Alfaro-Moreno E, Soria-Castro E, García-Latorre E, Cabañas-Moreno J, Ramos-Godinez MDP, and López-Marure R. TiO2 Nanoparticles Induce Dysfunction and Activation of Human Endothelial Cells. Chem. Res. Toxicol. 25(4):920-930 (2012).
Nemmar A, Al-Salam S, Dhanasekaran S, Sudhadevi M, and Ali BH. Pulmonary exposure to diesel exhaust particles promotes cerebral microvessel thrombosis: protective effect of a cysteine prodrug l-2-oxothiazolidine-4-carboxylic acid. Toxicology(263). 2-3:84-92 (2009).
Nemmar A, Al-Salam S, Zia S, Marzouqi F, Al-Dhaheri A, Subramaniyan D, Dhanasekaran S, Yasin J, Ali BH, Kazzam EE. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone. Br J Pharmacol. 164(7):1871-1882 (2011).
Nemmar A, Hoylaerts MF, Hoet PHM, and Nemery B. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters(149). 13:243-253 (2004).
Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, and Nemery B. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. American Journal of Respiratory and Critical Care Medicine(164). 9:1665-1668 (2001).
Niosh Current Intelligence Bulletin: Evaluation of Health Hazard and Recommendations for Occupational Exposure to Titanium Dioxide, 2005.
Noël A, Charbonneau M, Cloutier Y, Tardif R, and Truchon G. Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state. Particle and Fibre Toxicology. 10:48 (2013).
Noël A, Maghni K, Cloutier Y, Dion C, Wilkinson KJ, Hallé S, Tardif R, Truchon G. Effects of inhaled nano-TiO2 aerosols showing two distinct agglomeration states on rat lungs. Toxicol Lett. 214(2):109-119 (2012).
Page EL, Robitaille GA, Pouyssegur J and Richard DE. Induction of hypoxia- inducible factor-1 alpha by transcriptional and translational mechanisms. J Biol Chem. 277:48403-48409 (2002).
Parekh D, Dancer RC, Thickett DR. Acute lung injury. Clinical Medicine. 11(6): 615-18 (2011).
Parsons KK and Coffman TM. The renin-angiotensin system: it’s all in your head. J. Clin. Invest. 117:873-876 (2007).
Pope III CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA. 287:1132-1141(2002).
Pope III CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution: Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation. 109:71-77 (2004).
Pope III CA, Ezzati M, and Dockery DW. Fine-Particulate Air Pollution and Life Expectancy in the United States. N Engl J Med. 360:376-86 (2009).
Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med. 61(5):442-447 (2004).
Richard DE, Berra E and Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 275:26765-26771 (2000).
Riva DR, Magalhães CB, Lopes AA, Lanças T, Mauad T, Malm O, Valença SS, Saldiva PH, Faffe DS, Zin WA. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol. 23(5): 257-267(2011).
Roberts JR, McKinney W, Kan H, Krajnak K, Frazer DG, Thomas TA, Waugh S, Kenyon A, MacCuspie RI, Hackley VA, Castranova V. Pulmonary and Cardiovascular Responses of Rats to Inhalation of Silver Nanoparticles. J Toxicol Environ Health A. 76(11):651–668 (2013).
Rosenthal C, Caronia C, Quinn C, Lugo N, Sagy M: A comparison among animal models of acute lung injury. Crit Care Med. 26:912-916 (1998).
Rossi EM, Pylkkanen L, Koivisto AJ, Nykasenoja H, Wolff H, Savolainen K, Alenius H. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol. 7:35 (2010).
Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, Plaza JJ, Egido J. Role of the Renin-Angiotensin System in Vascular Diseases Expanding the Field. Hypertension. 38:1382-1387 (2001).
Ryan US, Ryan JW, Whitaker C, Chiu A. Localization of angiotensin converting enzyme (kininase II). Tissue Cell. 8 (1):125-145 (1976).
Sager TM, Kommineni C, Castranova V: Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol. 5:17 (2008).
Salvi S, Blomberg A, Rudell B, Kelly F, Sandström T, Holgate ST, Frew A. Acute Inflammatory Responses in the Airways and Peripheral Blood After Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers. Am J Respir Crit Care Med. 159(3):702-709 (1999).
Simko M and Mattsson MO: Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol. 7:42 (2010).
Siponen T, Yli-Tuomi T, Aurela M, et al. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. Occup Environ Med. 72:277–283 (2015).
Smulders S, Luyts K, Brabants G. Toxicity of Nanoparticles Embedded in Paints Compared with Pristine Nanoparticles in Mice. Toxicol sci (2014).
Stearns RC, Murthy GGK, Skornik W, Hatch V, Katler M, Godleski JJ. Detection of ultrafine copper oxide particles in the lungs of hamsters byelectron spectroscopic imaging. In: Jouffrey B,Colliex C editors. Proceedings of ICEM 13-PARIS. Paris: Les Editions de Physique. 763-764 (1997).
Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O'Shaughnessy PT, Grassian VH, et al. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 8:5 (2011).
Sun D, Meng TT, Loong TH, Hwa TJ. Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci. Technol. 49:103-110 (2004).
Sun Q, Tan D, Ze Y, Sang X, Liu X, Gui S, Cheng Z, Cheng J, Hu R, Gao G, Liu G, Zhu M, Zhao X, Sheng L, Wang L, Tang M, Hong F. Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. J Hazard Mate. 47-53 (2012).
Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH,Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ. Subchronic Inhalation Toxicity of Silver Nanoparticles. Toxicol Sc. 108(2): 452–461 (2009).
Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ. Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 20(6):567-74 (2008).
Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 35:881-900 (2003).
Tamagawa E, Morimoto K, Gray C, Mui T, Yatera K, Zhang X, Xing L, Li Y, Laher I, Sin DD, Man SF,van Eeden SF. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 295:L79-L65 (2008).
Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II Angiogenic Effect In Vivo Involves Vascular Endothelial Growth Factor- and Inflammation-Related Pathways. Lab Invest. 82:747-756 (2002).
Terzano C, Stefano FD, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 14: 809-821 (2010).
Turner MC, Krewski D, Pope CA 3rd, Chen Y, Gapstur SM, Thun MJ. Long-term Ambient Fine Particulate Matter Air Pollution and Lung Cancer in a Large Cohort of Never-Smokers. Am J Respir Crit Care Med. 184:1374-1381 (2011).
Uhal BD, Li X, Piasecki CC, Molina-Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell B. 44(3):465-468 (2012).
Uhal BD, Zhang H, Abdul-Hafez A, Shu R, Li X. Amiodarone Induces Angiotensinogen Gene Expression in Lung Alveolar Epithelial Cells through Activation Protein-1. Basic Clin Pharmacol Toxicol. 100(1):59-66 (2007).
Upadhyay S, Stoeger T, Harder V, Thomas RF, Schladweiler MC, Semmler-Behnke M, Takenaka S, Karg E, Reitmeir P, Bader M, Stampfl A, Kodavanti UP and Schulz H. Exposure to ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats. Part Fibre Toxicol. 5:19 (2008).
Upadhyay S, Stoeger T, George L, Schladweiler MC, Kodavanti U, Ganguly K, Schulz H. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part Fibre Toxicol. 11-36 (2014).
Utell MJ, Frampton MW, Zareba W, Devlin RB, Cascio WE.. Cardiovascular effects associated with air pollution: potential mechanisms and methods of testing. Inhal Toxicol. 14:1231-1247 (2002).
Utell MJ, Frampton MW. Acute Health Effects of Ambient Air Pollution: The Ultrafine Particle Hypothesis. J Aerosol Med. 13(4):355-359 (2000).
Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med. 33:1243–1251 (2007).
Vesterdal LK, Folkmann JK, Jacobsen NR, Sheykhzade M, Wallin H, Loft S, Møller P. Pulmonary exposure to carbon black nanoparticles and vascular effects. Part Fibre Toxicol. 7:33(2010).
Wang F, Xia ZF, Chen XL, Jia YT, Wang YJ, Ma B. Angiotensin II type-1 receptor antagonist attenuates LPS-induced acute lung injury. Cytokine. 48:246-53 (2009).
Wang R, Alam G, Zagariya A, Gidea C, Pinillos H, Lalude O, Choudhary G, Oezatalay D, Uhal BD. Apoptosis of lung epithelial cells in response to TNF-alpha requires angitensin II generation de novo. J Cell Physiol. 185:153-259 (2000).
Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology. 230(1)90-104 (2007).
Wosten-van Asperen RM, Lutter R, Haitsma JJ, Merkus MP, van Woensel JB, van der Loos CM, Florquin S, Lachmann B, Bos AP. ACE mediates ventilator-induced lung injury in rats via angiotensin II but not bradykinin. Eur Respir J. 31:363-371 (2008).
Ying Z, Xie X, Bai Y, Chen M, Wang X, Zhang X, Morishita M, Sun Q, Rajagopalan S. Exposure to concentrated ambient particulate matter induces reversible increase of heart weight in spontaneously hypertensive rats. Part Fibre Toxicol. 12:15 (2015).
Zhang H and Sun GY. LPS induces permeability injury in lung microvascular endothelium via AT1 receptor. Archives of Biochemistry and Biophysics. 441:75-83 (2005).
Zhang H and Sun GY. Expression and Regulation of AT 1 Receptor in Rat Lung Microvascular Endothelial Cell. Journal of Surgical Research. 134:190-197 (2006).
Zhang Y, Naggar JC, Welzig CM, Beasley D, Moulton KS, Park HJ, Galper JB. Simvastatin inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein e-knockout mice: possible role of ERK. Arterioscler Thromb Vasc Biol. 29(11):1764-1771 (2009).