| 研究生: |
姜東漢 Chiang, Tung-han |
|---|---|
| 論文名稱: |
銀底層對CoPt合金膜之微結構與磁性質之影響 Effects of Ag underlayer on microstructure and magnetic properties of CoPt films |
| 指導教授: |
李玉華
Lee, Y.H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 銀 |
| 外文關鍵詞: | Ag |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以直流濺鍍系統分別臨場製備Ag(x nm)/Si、CoPt(10 nm)/Ag(x nm)/Si,其中x=0、1、5、8、10、20、40、50、80、100,各以三種不同實驗條件進行討論,分別為未經事後退火處理、事後退火300℃30分鐘以及事後退火600℃30分鐘。
針對Ag(x nm)/Si樣品之表面型態而言,在未經事後退火處理情況下x=0、1、5,Ag為顆粒狀分佈;x=8、10,Ag逐漸為連續膜,但仍有些許空洞;x=20、40、50、80、100,Ag為連續膜,但表面Ag集結且不平整。事後退火300℃30分鐘情況下x=0、1、5,Ag仍為顆粒狀分佈;x=8、10、20,受退火溫度影響,Ag集結為大小不一的島狀結構;x=40、50、80、100,Ag仍為連續膜,但表面集結較未退火前圓滑。事後退火600℃30分鐘情況下x=0、1、5,Ag仍為顆粒狀分佈;x=8、10、20、40、50、80,因受更高溫的退火影響,Ag集結為大小不一的島狀結構;x=100,仍不受高溫退火影響,但表面變得平滑。由以上結果顯示,Ag極易受溫度影響而集結,除非厚度夠薄(x=1、5)或厚(x=100)。
針對CoPt(10 nm)/Ag(x nm)/Si樣品之表面型態而言,在未經事後退火處理以及事後退火300℃30分鐘,其表面無太大的差異,皆是連續膜;經事後退火600℃30分鐘,在x=1、5、8、10,CoPt表面形態受Ag底層影響受到破壞;x=20~100,CoPt為連續膜,但表面有Ag顆粒隨機散佈。
CoPt(10 nm)/Ag(x nm)/Si樣品之XRD圖譜,在未退火以及事後退火的情況下,皆有L10 CoPt(111),除了x=5、8、10在事後退火600℃30分鐘情況下, L10 CoPt(111)是受到破壞的,相對應於磁性質Hc⊥值。
To DC sputtering system, this experiment is prepared spot Ag (x nm) / Si、CoPt (10 nm) / Ag (x nm) / Si, in which x = 0、1、5、8、10、20、40、50、80 and 100, each samples has three different experimental conditions which have discussed, respectively, without post-annealing, post-annealing 300℃ 30 minutes and 600℃ 30 minutes.
In terms of surface morphology, Ag (x nm)/Si samples works without post-annealing treatment in the case x = 0、1、5, Ag distribution for granular; x = 8、10, Ag gradually became a continuous film, but there are still some empty cavities; x = 20、40、50、80、100, Ag for continuous film, but not the formation of surface Ag assembly. Post-annealing 300℃ 30 minutes in the case x = 0、1、5, Ag granular distribution remains; x = 8、10、20, affected by the annealing temperature, Ag island assembly structure for the different sizes; x = 40、50、80、100, Ag film is still continuous, but the surface morphology were smooth surface than before. Post-annealing 600℃ 30 minutes in the case x = 0、1、5, Ag granular distribution remains;x = 8、10、20、40、50、80, due to the impact of high-temperature annealing, Ag assembly for island structure of various sizes;x = 100, is still not affected by the high-temperature annealing, but the surface morphology becomes smooth. Furthermore, Ag were easily segregated and affected by temperature, unless the thickness of thin enough (x = 1、5) or thick (x = 100).
For samples of CoPt (10 nm)/Ag (x nm)/Si in terms of surface morphology, without annealing and post-annealing after 300℃ 30 minutes, its not much different from the surface, is continuous film;After post-annealing 600℃ 30 minutes, in the x = 1、5、8、10, the CoPt surface is affected by the destruction of Ag underlayer;x = 20 ~ 100, CoPt is continuous film, but the surface of Ag particles were randomly scattered.
The XRD patterns of CoPt (10 nm)/Ag (x nm)/Si samples, in the circumstances of working without annealing and post-annealing, both L10 CoPt (111), in addition to x = 5、8、10 post-annealing at 600℃ 30 minute, L10 CoPt (111) is damaged, the results are also corresponding the Hc value of magnetic properties.
[1] E. Grochowski, Hitachi Global Storage Technologies.
[2] Wikipedia(http://en.wikipedia.org/wiki/Perpendicular_recording)
[3] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999)
[4] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977).
[5] 台灣磁性協會,磁性技術手冊第16章。
[6] R. W. Wood, J. Miles, and T. Olson, IEEE Trans. Magn. 38, 1711 (2002).
[7] IEEE Trans. Magn. 36, 1, (2000)
[8] P.M. Hansen, Metallurgy and metallurgical engineering series, constitution of binary alloy, New York,(1958)
[9] 洪國議, ”(鈷鉑/銀/碳)之微觀結構與磁性質之研究”,國立成功大學物理所碩士 論文, (2008)。
[10] 戴道生、錢昆明,”鐵磁學”,科學出版社, 44 (1992)。
[11] 張煦、李學養,”磁性物理學”,聯經出版事業公司,(1982)。
[12] P. Weiss, J. Phys. 6, 661 (1907).
[13] B. D. Cullity, ”Introduction to Magnetic Materials” Chap 9.
[14] 許樹恩、吳泰伯,”X光繞射原理與材料結構分析”,中國材料科學學會, (1996)。
[15] 羅吉宗,”薄膜科技與應用”, 全華科技圖書股份有限公司, Chap. 2 (2005)。
[16] E. Maniosa, V. Karanasosa, D. Niarchosa, and I. Panagiotopoulosb, J. Magn. Magn. Mater. 272–276 (2004) 2169–2170
[17] X. H. Xu, Z. G. Yang, and H. S. Wu, J. Magn. Magn. Mater. 295, 106 (2005)
[18] Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 91, 072502 (2007).
[19] Y. F. Ding, J. S. Chen, Appl. Phys. Lett. 93, 032506 (2008).
[20]網路新聞(http://magazine.sina.com.tw/article/20090429/1658705.html)
[21] 羅吉宗, ”薄膜科技與應用 ”, 全華科技圖書股份有限公司, Chap. 7 (2005)。