簡易檢索 / 詳目顯示

研究生: 毛致中
Mao, Chih-Chung
論文名稱: 二氧化鈦與碳黑之複合光觸媒於批式及續流攪拌式反應器降解甲基橙之效能
The Performance of Titanium Dioxide Incorporated with Carbon Black in Batch and CSTR Reactors for Photodegradation of Methyl Orange
指導教授: 翁鴻山
Weng, Hung-Shan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 202
中文關鍵詞: 二氧化鈦碳黑複合光觸媒甲基橙光催化降解續流攪拌式反應器
外文關鍵詞: titania, carbon black, composite catalyst, photocatalytic degradation, methyl orange, CSTR
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增強二氧化鈦的光催化性能,本研究使用溶膠凝膠法將二氧化鈦擔載在數種碳材上,製成粉末狀的複合光觸媒,碳材包括活性碳、碳黑、中孔碳與奈米碳管,並且以批式反應器測定複合光觸媒對甲基橙降解反應的光催化活性;也以相同條件製備不含有碳材的純二氧化鈦光觸媒,並與複合光觸媒的光催化活性比較。結果顯示:二氧化鈦與碳材結合的複合光觸媒之光催化活性比純二氧化鈦高,而且碳材的孔洞尺寸、結構、導電性及二氧化鈦與碳材之間的作用力等,都會影響複合光觸媒的光催化活性。碳材中,由於碳黑具有較大的孔洞、高吸附能力、高導電性、二氧化鈦可以附著且分散在碳黑表面等優點,二氧化鈦與碳黑結合的複合光觸媒之光催化活性最高。
    二氧化鈦與碳黑結合的比例(簡稱鈦碳比)會影響複合光觸媒的吸附能力及二氧化鈦的光照面積。鈦碳比過高時,因碳量少,使得複合光觸媒的吸附能力薄弱,並且二氧化鈦微粒也會部份聚集,減少被入射光照射的面積;鈦碳比過低時,過多的碳黑會遮蔽入射光照射在二氧化鈦表面。當鈦碳比為1時,光催化活性最高,而且本質反應速率常數比純二氧化鈦之視反應速率常數高。
    雖然二氧化鈦與碳黑結合可提高光催化活性,但是仍然比商售Degussa P-25低。為了改良複合光觸媒的效能,接著由原先在空氣環境下進行鍛燒,改在氮氣環境下進行熱處理,並且尋找包括鈦碳比、水添加量及熱處理溫度等最適的製備條件。結果顯示:熱處理溫度提高至600℃,複合光觸媒的光催化活性最高,而且在500、600及700℃進行熱處理的複合光觸媒之光催化活性皆比Degussa P-25高。在光觸媒製備過程中,水添加量的改變對純二氧化鈦有極大的影響,水添加量增加,純二氧化鈦的光催化活性提高,當水量超過5 mL時,純二氧化鈦的光催化活性就不再改變;然而,複合光觸媒的光催化活性並不受水添加量的影響,即使沒有水的存在,600℃熱處理得到的複合光觸媒仍具有高光催化活性。
    本研究也探討續流式操作的可行性。由於上述以懸浮態存在於批式反應器之粉末狀觸媒不適用於續流式操作,因此以旋轉塗佈(Spin-coating)技術製備薄膜型觸媒(包括複合光觸媒與純二氧化鈦),每次將四片固定在反應器中進行續流式操作降解甲基橙,也進行批式操作互相比較。結果顯示:薄膜型複合光觸媒的穩定性極佳,其光催化活性不會隨著使用次數增加而衰減。比較批式與續流式操作的效能,意外地發現兩者之甲基橙去除率相差不大。探究原因是中間產物濃度有很大的影響,由於續流式操作的中間產物濃度比批式操作低,使得薄膜型光觸媒有較多的機會催化甲基橙的降解反應。實驗結果也顯示:薄膜型複合光觸媒的光催化活性仍然比薄膜型純二氧化鈦高。
    對於使用薄膜型觸媒的續流攪拌式反應系統, Langmuir-Hinshelwood (L-H)速率表示式只適用於甲基橙濃度少於45 μM的範圍。在這種情況下,反應速率常數及吸附平衡常數皆可求出。當甲基橙濃度高於45 μM時,L-H速率表示式需要經過修正才能適用。

    For the purpose of improving the photocatalytic performance of titania (TiO2), the powder of composite catalysts were prepared by incorporating TiO2 with different carbon substrates, including activated carbon (AC), carbon black (CB), mesoporous carbon and carbon nanotubes, using the sol-gel method. The photocatalytic activities of composite catalysts were determined by the photodegradation of methyl orange (MO) in slurry solution using a Pyrex reactor equipped with a circulating cooling tube made of quartz at the center of the reactor. The photocatalytic activity of bare TiO2 prepared under the same condition was also determined and compared with composite catalysts. The results show that the photocatalytic activities of all composite catalysts, higher than that of bare TiO2, are affected by the pore sizes, structure and electrical conductivities of carbon substrates as well as the interactions between TiO2 and carbon substrates. The photocatalytic activity of TiO2/CB is the highest among the compsite catalysts due to the large pore, high adsorption capacity, high electrical conductivity of CB and the particles of TiO2 well dispersed on the surface of CB.
    The ratio of TiO2 to CB largely affects the adsorption capacity of composite catalyst and the surface of TiO2 irradiated. When the ratio of TiO2 to CB is higher, the adsorption capacity of composite catalyst is less and the surface of TiO2 irradiated is reduced because of the TiO2 particles aggregated. When the ratio of TiO2 to CB is lower, more CB will shelter the surface of TiO2 irradiated and absorb incident light. An optimal weight ratio of 1 (TCB-1) for the highest photocatalytic activity was found and the intrinsic photocatalytic reaction rate constants of composite catalysts were also found higher than that of bare TiO2.
    However, the photocatalytic activity of TCB-1, which is the highest among the composite catalysts, is lower than Degussa P-25. Therefore, in order to improve the activity of composite catalyst, the calcination of catalysts under air was changed to annealing under N2-flowing surrounding. The optimal preparation condition, including the ratio of TiO2 to CB, the amount of water added and annealing temperature was searched. Experimental results reveal that the photocatalytic activities of composite catalysts annealed at 500, 600 and 700℃ are higher than Degussa P-25 and an optimal annealing temperature of 600℃ maximizes the activity. The amount of water which added into the solution of TiO2 precursor remarkably affects the photocatalytic activities of bare TiO2. The photocatalytic activity of bare TiO2 increases with increasing the amount of water and unchanges when the amount of water added exceeds 5 mL. However, the photocatalytic activities of composite catalysts are not varied with the amount of water added. A high photocatalytic activity can be obtained when the composite catalyst calcined at 600℃ even without the addition of water.
    The feasibility of a continuous-flowing system for the MO degradation was also studied. Because the photocatalyst in the powder form may not be used for a continuous-flow stirred-tank reactor (CSTR), the catalysts in the form of thin film (catalyst films) including composite catalyst and bare TiO2, were prepared by spin-coating method. Four pieces of the catalyst films were placed in the reactor for both batch and continuous-flow operations. The results show that the stability of composite catalyst thin film is good and the photocatalytic activity does not decay with the number of operation times. Unexpectedly, the removing percentages of MO for both batch and continuous-flow operations are almost the same. This fact is caused by the suppressing effect of intermediates. The concentration of intermediates for the continuous-flow operation is lower than batch operation, thereby the chance for the degradation of MO on the catalyst surface for the continuous-flow operation is higher. Experimental results also show that the photocatalytic activity of composite catalyst thin film is higher than that of bare TiO2 thin film.
    For the CSTR with the catalyst film, Langmuir-Hinshelwood (L-H) model can only apply to the case where the concentration of MO is less than 45 μM. Under such a circumstance, the rate constant and the adsorption constant can be obtained. When the concentration of MO exceeds 45 μM, the L-H model should be modified.

    中文摘要 I Abstract IV 誌謝 VII 目錄 VIII 圖目錄 XIV 表目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3論文內容 5 第二章 基本原理與文獻回顧 6 2-1 光觸媒簡介 6 2-2 光催化原理 7 2-3 二氧化鈦 11 2-4 二氧化鈦應用 12 2-4-1 抗菌 13 2-4-2 空氣污染物去除 13 2-4-3 水污染物處理 14 2-5吸附劑介紹 16 2-6 碳黑 17 2-7二氧化鈦與碳材的複合材料之簡介 18 第三章 實驗 25 3-1 前言 25 3-2 藥品與材料 25 3-3 儀器設備 26 3-4 觸媒製備步驟 27 3-4-1 碳材前處理 28 3-4-2 粉末狀二氧化鈦-碳黑複合光觸媒的製備 28 3-4-2-1 與不同碳材結合的複合光觸媒 28 3-4-2-2 不同碳鈦比的二氧化鈦與碳黑之複合光觸媒 29 3-4-2-3 改變鈦碳比、水添加量及熱處理溫度的製備條件 29 3-5 光源的波長範圍及反應器不同位置的光強度 36 3-6粉末狀光觸媒用於甲基橙光降解反應之實驗 38 3-6-1 光催化反應系統 38 3-6-2甲基橙光催化降解反應之背景實驗 39 3-6-2-1 不照光吸附實驗 39 3-6-2-2 不加光觸媒直接光降解實驗 40 3-6-2-3甲基橙光催化降解批式反應之實驗步驟 41 3-7 薄膜型光觸媒用於甲基橙光降解反應 41 3-7-1 光催化反應器 41 3-7-2 續流攪拌式反應之實驗步驟 43 3-7-3 批式反應之實驗步驟 43 3-8 觸媒之鑑定與分析 44 3-8-1 X光繞射分析儀(XRD) 44 3-8-2 熱重分析儀(TGA) 46 3-8-3 物理吸附分析(BET) 47 3-8-4 掃描式電子顯微鏡(SEM) 48 3-8-5 穿透式電子顯微鏡(TEM) 49 3-8-6 紫外線-可見光吸收光譜儀(UV-Vis spectrometer) 49 3-8-7 X光光電子能譜儀 (XPS) 50 第四章 52 4-1 前言 52 4-2 二氧化鈦擔載在不同碳材的比較 53 4-2-1 XRD及TGA分析 54 4-2-2 BET比表面積及孔洞分佈之分析 58 4-2-3 表面形態分析 60 4-2-4光催化活性測試 62 4-3 碳黑之吸附平衡 68 4-3-1吸附平衡實驗步驟 68 4-3-2 吸附平衡結果 68 4-4 二氧化鈦與碳黑之結合比例的影響 71 4-4-1 XRD及TGA之分析 71 4-4-2 BET比表面積及孔洞分佈之分析 74 4-4-3 表面形態分析 76 4-4-4 觸媒活性測試 78 4-4-4-1 空白實驗 79 4-4-4-2 觸媒活性測試實驗 79 4-4-4-3 光催化反應速率常數 81 4-5 結論 88 第五章 90 5-1 前言 90 5-2 田口式實驗法 (Taguchi’s method) 90 5-2-1 田口式直交表實驗法 90 5-3 熱處理溫度對複合光觸媒與純二氧化鈦活性的影響 95 5-3-1 XRD分析 96 5-3-2 BET表面積及孔徑分佈 99 5-3-3表面形態分析 103 5-3-4表面組成及光學性質分析 107 5-3-5複合光觸媒與純二氧化鈦應用於甲基橙光催化降解反應 112 5-3-5-1 純二氧化鈦的光催化活性 112 5-3-5-2 複合光觸媒的光催化活性 119 5-4 鈦碳比參數探討 126 5-4-1 XRD鑑定 126 5-4-2 BET表面積及孔徑分佈 128 5-4-3 表面形態分析 129 5-4-4 光催化活性比較 131 5-5 水添加量參數探討 136 5-5-1 XRD鑑定 136 5-5-2 BET表面積及孔洞分佈 140 5-5-3 表面型態分析 142 5-5-4 光催化活性測試 145 5-5-4-1 純二氧化鈦 145 5-5-4-2 複合光觸媒 146 5-6 結論 150 第六章 152 6-1 前言 152 6-2 薄膜型複合光觸媒的重複使用與耐久性 153 6-3 進料流率的影響 156 6-4入口甲基橙濃度的影響 160 6-4-1 薄膜型複合光觸媒(薄膜觸媒) 160 6-4-2 以薄膜型複合光觸媒催化之甲基橙降解反應表示式 166 6-4-3 薄膜型純二氧化鈦觸媒(薄膜二氧化鈦) 170 6-5 結論 176 第七章 總結 178 7-1 結論 178 7-2 對未來研究複合光觸媒的建議 180 參考文獻 182 附錄一 194 附錄二 196 附錄三 197 附錄四 199 附錄五 200

    Ao, Y.H, Xu, J.J., Fu, D.G. and Yuan, C.W., “A simple route for the preparation of anatase titania-coated magnetic porous carbons with enhanced photocatalytic activity.” Carbon, 46, 596-603, (2008).
    Arana, J., Dona Rodriguez, J.M., Tello Rendon, E., Garriga i Cabo, C., Gonzalez-Diaz, O., Herrera-Melian, J.A., Perez-Pena, J., Colon, G. and Navio, J.A., “TiO2 activation by using activated carbon as a support Part I. Surface characterisation and decantability study.” Appl. Catal. B: Environ., 44, 161-172, (2003).
    Arana, J., Dona Rodriguez, J.M., Tello Rendon, E., Garriga i Cabo, C., Gonzalez-Diaz, O., Herrera-Melian, J.A., Perez-Pena, J., Colon, G. and Navio, J.A., “TiO2 activation by using activated carbon as support part II. Photoreactivity and FTIR study.” Appl. Catal. B: Environ., 44, 153-160, (2003).
    Arana, J., Dona Rodriguez, J.M., Gonzalez Diaz, O., Herrera Melian, J.A. and Perez Pena, J., “The effect of modifying TiO2 on catechol and resorcinol photocatalytic degradation.” J. sol. energ.-T. Asme, 129, 80-86, (2007).
    Auer, E., Freund, A., Pietsch, J. and Tacke, T., “Carbon as supports for industrial precious metal catalysts.” Appl. Catal. A-Gen., 173, 259-271, (1998).
    Baiocchi, C., Brussino, M.C., Pramauro, E., Bianco Prevot, A., Palmisano, L. and Marci, G., “Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry.” Int. J. Mass. Spectrom., 214, 247-256, (2002).
    Bianco Prevot, A., Basso, A., Baiocchi, C., Pazzi, M., Marci, G., Augugliaro, V., Palmisano, L. and Pramauro, E., “Analytical control of photcatalytic treatments: degradation of a sulfonated azo dye.” Anal. Bioanal. Chem., 378, 214-220, (2004).
    Bauer, R., Waldber, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S. And Maletzky, P., ”The photo-fenton reaction and TiO2/UV Process for waste water treatment – novel developments.” Catal. Today, 53, 131-144, (1999).
    Brunaller, S., Emmett, P.H. and Teller, E.,Adsorption of gases in multimolecular layers.” J. Am. Chem. Soc., 60, 309-319, (1938).
    Carey, J.H., Lawrence, J. and Tosine, H.M., “Photodechlorination of PCB’s in the Presence of Titanium Dioxide in Aqueous Suspensions.” Bull. Environ. Contam. Toxicol., 16, 697-701, (1976).
    Carp, O., Huisman, C.L. and Reller, A., “Photoinduced reactivity of titanium dioxide.” Prog. Solid State Ch., 32, 33-177, (2004).
    Callister, Jr, W.D., “Fundamentals of materials science and engineering: An integrated approach.” John Wiley & Sons, NJ, 2005.
    Chen, D.W. and Ray, A.K., “Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2.” Appl. Catal. B-Environ., 23, 143-157, (1999).
    Chiou, C.H., Wu, C.Y. and Juang, R.S., “Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process.” Chem. Eng. J., 139, 322-329, (2008).
    Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C., “Recent developments in photocatalytic water treatment technology: A review.” Water Res., 44, 2997-3027, (2010).
    Coleman, H.M., Marquis, C.P., Scott, J.A., Chin, S.S. and Amal, R., “Bactericidal effects of titanium dioxide-based photocatalysts.” Chem. Eng. J., 113, 55-63, (2005).
    Colon, G., Hidalgo, M.C., Macias, M., Navio, J.A. and Dona, J.M., “Influence of residual carbon on the photocatalytic activity of TiO2/C samples for phenol oxidation.” Appl. Catal. B: Environ., 43, 163-173, (2003).
    Cullity, B.D. and Stock, S.R., “Elements of X-Ray Diffraction.” 3rd ed., Prentice Hall, (2001).
    da Silva, C.G. and Faria, J.L., “Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation.” J. Photoch. Photobio. A 155, 133-143, (2003).
    Frank, S.N. and Bard, J., “Heteroheneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at Titanium Dioxide Powder.” J. Am. Chem. Soc., 99, 303-304, (1977).
    Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode.” Nature, 238, 37-38, (1972).
    Furube, A., Asahi, T., Masuhara, H., Yamashita, H. And Anpo, M., “Charge Carrier Dynamics of Standard TiO2 Catalysts Revealed by Femtosecond Diffuse Reflectance Spectroscopy.” J. Phys. Chem. B, 103, 3120-3127, (1999).
    Gratzel, M., “Photoelectrochemical cells.” Nature, 414, 338-344, (2001).
    Guettai, N. and Ait Amar, H., “Photocatalytic oxidation of methyl orange in present of titanium dioxide in aqueous suspension. Part I: Parametric study” Desalination, 185, 427-437, (2005).
    Habibi, M.H., Hassanzadeh, A. and Mahdavi, S., “The effect of perational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions.” J. Photoch. Photobio. A-Chem., 172, 89-96, (2005).
    Hermann, J.M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.” Catal. Today, 53, 115-129, (1999).
    Hoffmann, M. R., Martin, S.T., Choi, W. and Bahnemann, D.W., “Environmental applications of semiconductor photocatalysis.” Chem. Rev., 95, 69-96, (1995).
    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Hermmann, J.M., “Photocatalytic degradation pathway of methylene blue in water.” Appl. Catal. B-Environ., 31, 145-157, (2001).
    Inagaki, M., Hirose, Y., Matsunaga, T., Tsumura, T. and Toyoda M., “Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution.” Carbon, 41, 2619-2624, (2003).
    Inagaki, M., Kojin, F., Tryba, B. And Toyoda, M., ”Carbon-coated anatase: the role of the carbon layer for photocatalytic performance.” Carbon, 43, 1652-1659, (2005).
    Izumi, I., Fan, F.R.F. and Bard, A.J., “Heterogeneous Photocatalytic Decomposition of Benzoic Acid and Adlpic Acid on Platinized TiO2 Powder. The Photo-Kolbe Decarboxylative Route to the Breakdown of the Benzene Ring and to the Production of Butane.” J. Phys. Chem., 85, 218-223, (1981).
    Jaeger, C.D. and Bard, A.J., “Spin Trapping and Electron Spon Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate Systems.” J. Phys. Chem., 83, 3146-3152, (1979).
    Janus, M., Inagaki, M., Tryba, B., Toyoda, M. and Morawski, A.W., “Carbon-modified TiO2 photocatalyst by ethanol carbonization.” Appl. Catal. B: Environ., 63, 272-276, (2006).
    Janus, M. and Morawski, A.W., “New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition.” Appl. Catal. B-Environ., 75, 118-123, (2007).
    Jardim, W.F., Moraes, S.G. and Takiyama, M.M.K., “Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates.” Water Res., 31, 1728-1732, (1997).
    Kamat, P.V., Bedja, I. and Hotchandani, S., “Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 incolloidal TiO2 semiconductor suspensions.” J. Phys. Chem., 98, 9137-9142, (1994).
    Kudo, A., “Development of photocatalyst materials for water splitting.” Int. J. Hydrogen. Energ., 31, 197-202, (2006).
    Leary R. and Westwood, A., “Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis.” Carbon, 49, 741-772, (2011).
    Lettmann, C., Hildenbrand, K., Kisch, H., Mayck, W. and Maier, W.F., “Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst.” Appl. Catal. B-Environ., 32, 215-227, (2001).
    Li, W., Nai, Y., Liu, C., Yang, Z.H., Feng, X., LU, X.H., Van Der Laak, N.K. and Chan, K.Y., Highly Thermal Stable and Highly Crystalline Anatase TiO2 for Photocatalysis.” Environ. Sci. Technol., 43, 5423-5428, (2009).
    Li, Y., Li, X., Li, J. and Yin, J., “Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study.” Water Res., 40, 1119-1126, (2006).
    Linsebigler, A.L., Lu, G. and Yates, Jr., J.T., “Photocatalysis on TiO2 surfaces: Principles, Mechanisms, and Selected Results.” Chem. Rev., 95, 735-758, (1995).
    Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H. and Wilkinson, D.P., “A review of anode catalysis in the direct methanol fuel cell.” J. Power Sources, 155, 95-110, (2006).
    Liu, S.X., Chen, X.Y. and Chen, X., “A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.” J. Hazard. Mater., 143, 257-263, (2007).
    Matos, J., Laine, J. and Herrmann, J.M., “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon.” Appl. Catal. B: Environ., 18, 281-291, (1998).
    Matos, J., Laine, J. and Herrmanm, J.M., “Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania.” J. Catal., 200, 10-20, (2001).
    Matos, J., Laine, J., Herrmanm, J.M., Uzcategui, D. and Brito, J.L., “Influence of activated carbon upon titania on aqueous photocatalytic consecutive runs of phenol photodegradation.” Appl. Catal. B: Environ., 70, 461-469, (2007).
    Mozia, S., Toyoda, M., Inagaki, M., Tryba, B. and Morawski, A.W., “Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor.” J. Hazard. Mater., 140, 369-375, (2007).
    Ohno, T., Tokieda, K., Higashida, S. and Matsumura, M., “Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene.” Appl. Catal. A-Gen., 244, 383-391, (2003).
    Ohtani, B., Ogawa, T. and Nishimoto, S., “Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions.” J. Phys. Chem. B, 101, 3746-3752, (1997).
    Ortiz-Gomez, A., Serrano-Rosales, B., Salaices, M. and de Lasa, H., “Photocatalytic oxidation of phenol: Reaction network, Kinetic modeling, and Parameter estimation.” Ind. Eng. Chem. Res., 46, 7394-7409, (2007).
    Ramaswamy, V., Jagtap, N.B., Vijayanad, S., Bhange, D.S. and Awati, P.S., “Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods.” Mater. Res. Bull., 43, 1145-1152, (2008).
    Rincon, M.E., Trujillo-Camocho, M.E., Cuentas-Gallegos, A.K. and Casillas, N., “Surface characterization of nanostructured TiO2 and carbon blacks composites by dye adsorption and photoelectrochemical studies.” Appl. Catal. B: Environ., 69, 65-74, (2006).
    Rincon, M.E., Trujillo, M.E., Avalos, J. and Casillas, N., “Photoelectrochemical process at interfaces of nanostructured TiO2/carbon black composites studied by scanning photoelectrochemical microscopy.” J. Solid State Electr., 11, 1287-1294, (2007).
    Sanjines, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G. and Levy, F. “Electronic structure of anatase TiO2 oxide.” J. Appl. Phys., 75, 2945-2951, (1994).
    Sittig, C., Textor, M., Spencer, N.D., Wieland, M. and Vallotton, P.H., “Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments.” J. Mater. Sci.-Mater. M., 10, 35-46, (1999).
    Spurr, R. A. and Myers, H., “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.” Anal. Chem., 29, 760-762, (1957).
    Stone Jr., V.F. and Davis, R.J., “Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves.” Chem. Mater., 10, 1468-1474, (1998).
    Subramani, A.K., Byrappa, K., Ananda, S., Lokanatha Rai, K.M., Ranganathaiah, C. and Yoshimura, M., “Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon.” Bull. Mater. Sci., 30, 37-41, (2007).
    Tian, G.H., Fu, H.G., Jing, L.Q. and Tian, C.G., “Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area.” J. Hazard. Mater., 161, 1122-1130, (2009).
    Tryba, B., Morawski, A.W. and Inagaki, M., “Application of TiO2-mounted activated carbon to the removal of phenol from water.”Appl. Catal. B: Environ., 41, 427-433, (2003).
    Tryba, B., Morawski, A.W. and Inagaki, M., “A new route for preparation of TiO2-mounted activated carbon.” Appl. Catal. B: Environ., 46, 203-208, (2003).
    Tryba, B., Toyoda, M., Morawski, A.W. and Inagaki, M., “Modification of carbon-coating TiO2 by iron to increase adsorptivity and photoactivity for phenol.” Chemosphere, 60, 477-484, (2005).
    Tsumuta, T., Kojitani, N., Umemura, H., Toyoda, M. and Inagaki, M., “Composites between photoactive anatase-type TiO2 and adsorptive carbon.” Appl. Surf. Sci., 196, 429-436, (2002).
    Valente, J.P.S., Padilha, P.M. and Florentino, A.O., “Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2.” Chemosphere, 64, 1128-1133, (2006).
    Vione, D., Minero, C., Maurino, V., Carlotti, M.E., Picatonotto, T. And Pelizzetti, E., “Degradation of phenol and benzoic acide in the presence of a TiO2-based heterogeneous photocatalyst.” Appl. Catal. B-Environ., 58, 79-88, (2005).
    Wang, W., Serp, P., Kalck, P. and Faria, J.L., “Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method.” Appl. Catal. B: Environ., 56, 305-312, (2005).
    Wang, W., Silva, C.G. and Faria, J.L., “Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts.” Appl. Catal. B: Environ., 70, 470-478, (2007).
    Yang, H. and Cheng, H., “Controlling nitrite level in drinking water by chrorination and chloramination.” Sep. Purif. Technol., 56, 392-396, (2007).
    Yang, R.T., “Adsorbents: Fundamentals and Applications.” John Wiley & Sons, NJ, 2003.
    Yoldas, B.E., “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters.” J. Mater. Sci., 21, 1087-1092, (1986).
    Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K. and Wong, P.K., “Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye.” Appl. Catal. B: Environ., 61, 1-11, (2005).
    Zhang, X.W., Zhou, M.G. and Lei, L.C., “Preparation of an Ag-TiO¬¬¬2 photocatalyst coated on activated carbon by MOCVD.” Mater. Chem. Phys., 91, 73-79, (2005).
    Zhang, X.W., Zhou, M.G. and Lei, L.C., “Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD.” Carbon, 43, 1700-1708, (2005).
    Zhou, W.J., Song, S.Q., Li, W.Z., Zhou, Z.H., Sun, G.Q., Xin, Q., Douvartzides, S. and Tsiakaras, P., “Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance.” J. Power Sources, 140, 50-58, (2005).
    李輝煌,”田口方法:品質設計的原理與實務”,高立圖書有限公司,台北,2003。
    李振彬,”直接甲醇燃料電池中陽極觸媒層效能之改良” ,國立成功大學化學工程學系碩士論文,2005。
    林宛嫻,”溶膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究”,國立成功大學化學工程學系碩士論文,2006。
    吳孟奇,洪勝富,連振炘,龔正,”半導體元件”, Streatman, B.G.原著,台灣東華書局,台北,2001。
    施敏,黃調元,”半導體元件物理與製作技術” ,國立交通大學出版社,第二版,新竹,2002。
    紀景發,”以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能”,國立成功大學化學工程學系碩士論文,2006。
    高濂,鄭珊,張青紅,”奈米光觸媒” ,五南圖書出版公司,台北,2004。
    許樹恩,吳泰伯,” X光繞射原理與材料結構分析”,中國材料科學學會,新竹縣,1996。
    孫逸民,陳玉舜,趙敏勳,謝明學,劉興鑑,”儀器分析”,全威圖書有限公司,台北,2004。
    陳婉貞,”二氧化鈦擔載碳材用於甲基橙光降解之效能” ,國立成功大學化學工程學系碩士論文,2009。
    張漢昌,黃世梁,”廢水污染與防治” ,新文京開發出版社,台北,2005。
    張瓊瑤,“添加錫或碳奈米管於鉑-釕觸媒中以提昇直接甲醇燃料電池陽極之效能” ,國立成功大學化學工程學系碩士論文,2007。
    辜珮瑜,”用於直接甲醇燃料電池中陽極之海膽狀PtRuSn觸媒的改良”, 國立成功大學化學工程學系碩士論文,2008。
    羅興安,”雙塔式真空變壓吸附法濃縮二氧化碳之研究”,國立中央大學化學工程研究所碩士論文,2000。
    繆應祺,”水污染控制工程”, 東南大學出版社,南京,2002。

    下載圖示 校內:2016-07-14公開
    校外:2021-01-01公開
    QR CODE