簡易檢索 / 詳目顯示

研究生: 連囿荃
Lian, Yu-Chuan
論文名稱: 基於電磁波引發透明的低光強拉曼輔助四波混頻
Low-light-level Raman-assisted four-wave mixing based on EIT
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 73
中文關鍵詞: 量子資訊電磁波引發透明四波混頻
外文關鍵詞: Quantum information, Electromagnetically induced transparency, Four-wave mixing
相關次數: 點閱:154下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們展示了一個基於電磁波引發透明現象且反向配置的低光強特殊四波混頻系統其理論及實驗上的對比。在一道強力的驅動光下對於微弱的反史托克光子來說會有一個透明窗口產生。而四波混頻系統是由一道微弱且大調變的幫浦光經由拉曼過程把反史托克光子轉換成史托克光而形成的。四波混頻實驗上是由幫浦光反向於反史托克光以及驅動光射入原子後,使得史托克光會沿著幫浦光的方向產生,故形成了一個由四道光組成的四波混頻機制。實驗上在我們達成了用約10個飛焦耳等級能量的幫浦光脈衝的情況下,觀測到了這個四波混頻約0.005% 的轉換效率。

    In this thesis, we demonstrate a specific four-wave mixing arranged in backward configuration based on electromagnetically induced transparency with extremely low-light level both experimentally and theoretically. A strong driving laser creates a transparency window for a weak anti-Stoke laser. The four-wave mixing process is then produced by a weak and far-detuned pumping beam which convert the anti-Stoke laser to Stoke laser through Raman transition. The pumping laser is being arranged counter-propagating to the anti-Stoke and driving lasers, thus the weak Stoke beam is generated along the direction of the pumping field, hence the backward four-wave mixing scheme is established. In the experiment, we have observed a FWM process with around 0.005% conversion efficiency by using the pumping laser pulse containing energy about the order of 10 femtojoule.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2. Semi­Classical Theory 4 2.1 Two­Level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 2.1.1 Two­Level system­introduction . . . . . . . . . . . . . . . . . . . 4 . 2.1.2 Two­Level system­calculation . . . . . . . . . . . . . . . . . . . . 6 2.2: Electromagnetically induced transparency (EIT) . . . . . . . . . . . . . . 10 . 2.2.1 EIT introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 . 2.2.2 EIT calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 . 2.2.3 Phase shift of Probe beam . . . . . . . . . . . . . . . . . . . . . . 15 . 2.2.4 Slow­Light Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 16 . 2.2.5 The dark state of electromagnetically induced transparency . . . . . 17 2.3 Four­wave mixing process . . . . . . . . . . . . . . . . . . . . . . . . . . 18 . 2.3.1 Four­Wave mixing process introduction . . . . . . . . . . . . . . . 19 . 2.3.2 Four­Wave mixing process Calculation . . . . . . . . . . . . . . . 20 . 2.3.3 Phase Mismatch Effect . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 3. Experiment Setup 33 3.1 Magneto­optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . 38 3.3 Raman Four­Wave Mixing experiment setup . . . . . . . . . . . . . . . . . 40 Chapter 4. Experiment result and discussion 43 4.1 Electromagnetically induced transparency . . . . . . . . . . . . . . . . . . 44 4.2 Raman Four­Wave Mixing process . . . . . . . . . . . . . . . . . . . . . . 46 Chapter 5. Conclusion and outlook 56 References 57 Appendix A. Characteristic of Gaussian Beam 60 A.1 Plan wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A.2 Gaussian beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Appendix B. Etalon Filter 66

    [1] John von Neumann. ”First Draft of a Report on the EDVAC”. June 1945.
    [2] John Backus. ”Can Programming be Liberated from von Neumann Style?”, volume 21. Communication of the ACM, 1978. 1977 ACM Turing Award Lecture.
    [3] Alan Turing. ”On computable numbers, with an application to the entscheidungs problem”. Proceedings of the London Mathematical Society, Vol.42 Series 2, Nov 1936.
    [4] Paul Benioff. ”The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines”. Journal of Statistical Physics, Vol. 22, May 1980.
    [5] Richard Feynman. ”Simulating physics with computers" International Journal of Theoretical Physics, Vol. 21, Issue 6­7, June 1982.
    [6] P. W. Shor. ”Algorithms for quantum computation: discrete logarithms and factoring”. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134, 1994.
    [7] David Mermin. ”Breaking rsa encryption with a quantum computer: Shor’s factoring algorithm”. Cornell University, March 2006. Lecture Notes.
    [8] Eugene Hecht. ”Optics”. Addison Wesley, 4th edition, 2002.
    [9] W. Greiner. ”Quantum mechanics: an introduction”. Springer Science and Business Media, 2011.
    [10] Louis de Broglie. ”The wave nature of the electron”. The Nobel Foundation, 1929.
    [11] W. Heisenberg. ”Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik”. Zeitschrift für Physik, Vol. 43, March 1927.
    [12] B.; Rosen N. Einstein, A.; Podolsky. ”Can quantum mechanical description of physical reality be considered complete?”. Physical Review, Vol. 47, May 1935.
    [13] Isaac Nielsen, Michael A.; Chuang. ”Quantum Computation and Quantum Information”. 2000.
    [14] John Preskill. ”Quantum computation and the entanglement frontier”. arxiv:1203.5813, Mar 2012.
    [15] John Preskill. ”Quantum computation in the NISQ ear and beyond”. Quantum, Vol. 2, aug 2018.
    [16] E.; Dreyer J.; Maître X.; Maali A.; Wunderlich C.; Raimond J. M.; Haroche S. Brune, M.; Hagley. ”Observing the progressive decoherence of the ”meter” in a quantum measurement”. Physical Review Letters, Vol. 77, Dec 1996.
    [17] D. Bacon. ”Decoherence, Control, and Symmetry in Quantum computers”. arXiv:quant­ph/0305025, May 2003.
    [18] Jerry M.; Steffen Matthias Gambetta, Jay M.; Chow. Building logical qubits in a superconducting quantum computing system”. npj Quantum Information, Vol. 3, id.2,January 2017.
    [19] J.; Megrant A.; Sank D.; Jeffrey E.; Chen Y.; Yin Y.; Chiaro B.; Mutus J.; Neill C.; O’Malley P.; Roushan P.; Wenner J.; White T. C.; Cleland A. N.; Martinis John M. Barends, R.; Kelly. ”Coherent Josephson qubit suitable for scalable quantum integrated circuits”. Pyhscial Review Letters, Vol. 111, id. 080502, Aug 2013.
    [20] Chow J. Gambetta J. et al. Majer, J. ”Coupling superconducting qubits via a cavity bus”. Nature, 449, Sep 2007.
    [21] B.D Josephson. ”The discovery of tunnelling supercurrents”. Review of Modern Physics, Vol. 46, March 1974.
    [22] David P. Loss, Daniel; DiVincenzo. ”Quantum computation with quantum dots”. Physical Review A., Vol. 57, Jan 1998.
    [23] Donald E. Savage Max G. Lagally Daniel W. van der Weide Robert Joynt Mark Friesen, Paul Rugheimer and Mark A. Eriksson. ”Practial design and simulation of silicon based quantum ­dot qubits”. Physical Review B., Vol. 67, id. 121301, March 2003.
    [24] ”Coherent singlet­triplet oscillations in a silicon based double quantum dot”. Nature, Vol. 481, Jan 2012.
    [25] Zoller P. Cirac, J. ”A scalable quantum computer with ions in an array of microtraps”. Nature, Vol. 404, April 2000.
    [26] Wolfgang Paul. ”Electromagnetic traps for charged and neutral particles”. Review of Modern Physics, Vol. 62, July 1990.
    [27] J. I. Cirac and P. Zoller. ”Quantum computations with cold trapped ions”. Phys. Rev. Lett., Vol. 74:4091–4094, May 1995.
    [28] Alexander I. Lvovsky, Barry C. Sanders, and Wolfgang Tittel. ”Optical quantum memory”. Nature Photonics, Vol. 3(12):706–714, December 2009.
    [29] K.­J. Boller, A. Imamoğlu, and S. E. Harris. Observation of electromagnetically induced transparency”. Phys. Rev. Lett., Vol. 66:2593–2596, May 1991.
    [30] Ya­Fen Hsiao, Pin­Ju Tsai, Hung­Shiue Chen, Sheng­Xiang Lin, Chih­Chiao Hung, Chih­Hsi Lee, Yi­Hsin Chen, Yong­Fan Chen, Ite A. Yu, and Ying­Cheng Chen. ”Highly efficient coherent optical memory based on electromagnetically induced transparency”. Phys. Rev. Lett., Vol. 120:183602, May 2018.
    [31] Y. O. Dudin, L. Li, and A. Kuzmich. ”Light storage on the time scale of a minute”. Phys. Rev. A, Vol. 87:031801, Mar 2013.
    [32] David C. Burnham and Donald L. Weinberg. ”Observation of simultaneity in parametric production of optical photon pairs”. Phys. Rev. Lett., Vol. 25:84–87, Jul 1970.
    [33] G. C. Cardoso and J. W. R. Tabosa. ”Four­wave mixing in dressed cold cesium atoms”. Optics Communications, Vol. 185(4­6):353–358, November 2000.
    [34] Artur K. Ekert. ”Quantum cryptography based on bell’s theorem”. Physical Review Letters, Vol. 67(6):661–663, August 1991.
    [35] James L. Park. ”The concept of transition in quantum mechanics”. Foundations of Physics, Vol. 1(1):23–33, March 1970.
    [36] Danielle A. Braje, Vlatko Balić, Sunil Goda, G. Y. Yin, and S. E. Harris. ”Frequency mixing using electromagnetically induced transparency in cold atoms”. Phys. Rev. Lett., Vol. 93:183601, Oct 2004.
    [37] Haim Suchowski, Kevin O’Brien, Zi Jing Wong, Alessandro Salandrino, Xiaobo Yin, and Xiang Zhang. Phase mismatch–free nonlinear propagation in optical zero­ index materials. Science, 342(6163):1223–1226, 2013.
    [38] A. Cable S. Chu E. L. Raab, M. Prentiss and D. E. Pritchard. ”Trapping of neutral sodium atom with radiation pressure”. Physical Review Letters, Vol. 59, Dec 1987.
    [39] H. Metcalf. ”Magneto­optical trapping and it’s application to helium metastables”. Journal of the Optical Society of Amberica B, Vol. 8, Nov 1991.
    [40] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E. Pritchard. ”High densities of cold atoms in a dark spontaneous­force optical trap”. Phys. Rev. Lett., 70:2253–2256, Apr 1993.

    下載圖示 校內:2021-07-31公開
    校外:2021-07-31公開
    QR CODE