| 研究生: |
林世仁 Lin, Shih-Jen |
|---|---|
| 論文名稱: |
窄能隙四元銅鋅錫硫複合物於光催化及鈣鈦礦太陽能電池之應用 Narrow bandgap Cu2ZnSnS4 compound for use in photodegradation and perovskite solar cell |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 鋅黃錫礦 、銅鋅錫硫 、水熱法 、光催化 、再復合 、高吸光能力 、再結晶 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | kesterite, Cu2ZnSnS4, hydrothermal, photocatalytic, recombination, high absorption, recrystallization, Perovskite solar cells |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以傳統水熱法製備高純度鋅黃錫礦銅鋅錫硫(Kesterite, Cu2ZnSnS4,KS CZTS)奈米粉體,藉由提昇反應物硫脲(thiourea, Tu)的濃度以減少二次相產生,如硫化銅(Cu2-xS)、硫化鋅(ZnS)、硫化亞錫(SnS)、硫化錫(SnS2)及硫化錫銅(Cu2SnS3) 以及添加螯合劑二乙基三胺(diethylenetriamine, DETA)的影響,藉其立體結構及螯合金屬的特性,促使改變反應機制,能更容易合成單一相高結晶的四元合金KS CZTS奈米粉體。
第二階段將CZTS粉體應用在光催化上,以微波輔助水熱法混合不同百分比的硝酸銀(silvernitride, AgNO3),使銀顆粒成長在CZTS粉體表面,以提高電子的傳導能力,其次再用傳統水熱法合成較高比表面積1T-2H相的二硫化鉬(molybdenum disulfide,MoS2)粉體,最終形成一複合物Ag-CZTS-MoS2,在能隙結構上有適當的匹配,使其能有效的提供電子電洞對的分離且避免再復合以提升光降解的能力。
第三階段是運用CZTS的高寬廣光譜吸收的能力,混合於導電高分子poly (3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS)當作p-i-n結構平板式鈣鈦礦太陽能電池的電洞傳輸層,不僅提供載子的躍遷及抑制再復合的行為外,亦可以增加高吸光能力,以及在調配三鹵化甲胺鉛(CH3NH3PbI3,MAPbI3)的前驅物上,選用非極性溶劑,用自然沈積法在常溫的大氣環境下進行合成,快速成長出奈米的立方晶體並形成緻密堆積的薄膜,接著利用甲胺氣體輔助經由晶界反應增加薄膜的再結晶性,我們應證了此製程的設計能有效克服鈣鈦礦先天易潮解的現象,能延長鈣鈦礦太陽能電池的壽命。
In this research we study the mechanism when using a conventional hydrothermal method for the synthesis of Cu2ZnSnS4 NPs well indexed to the high purity single kesterite phase for use in CZTS solar cells. An increased Tu concentration reduces the binary and ternary phases, while DETA serves not only to carry out chelating to form the precursors of [ZnSnS4(DETA)]2- and Cu2(DETA)2+, but also changes the particle shape from irregular sheets to uniform spheres.
In the second part, we discuss the use of a conventional hydrothermal method for the synthesis of Cu2ZnSnS4 powders well indexed into a high-purity KS phase. Furthermore, hybridized Ag/CZTS was successfully synthesized through a microwave-assisted hydrothermal process using water as the solvent for such processes as ultrasound and microwave irradiation to facilitate chemical reactions. It was found that the photocatalytic performance of the CZTS powders was greatly improved by the addition 1 and 2 wt% of Ag NPs deposited on the surface of the CZTS acting as the electron traps of the matrix. This prevented the recombination of electron-hole pairs and improved the charge transfer processes by hybridizing the 1T-2H MoS2 in the structure, thus increasing the light harvesting in photocatalysis due to the broad light absorption range.
In the third part, we fabricated MA+ and PbI3- precursors with polar-free solvents. The obtained sample show that MA vapor-assisted method increase the crystallinity and more regular morphology. Furthermore, it was found that adding 1 wt% CZTS serves not only increased the light harvesting broad light absorption region from visible to near-infrared, but also prevented the recombination of electron-hole pairs and improved the charge transfer processes. Furthermore, the enhancement photovoltaic performance of the device was improved by the addition 1 wt% CZTS NPs hybrid PEDOT:PSS with MA vapor-assisted exhibited the highest PCE. The results indicate that the solution-precipitation technique in this work could be a promising method to achieve large-area deposition of a perovskite active layer for mass production.
[1] T.Y. R. Kamada, S. Adachi, A. Handa, K. F. Tai, T. Kato, H.
Sugimo,NewWorld Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell
Efficiency Beyond 22%, In: Proceedings of IEEE 43rd Photovoltaic
SpecialistsConference (PVSC) Portland, (2016) 1287.
[2] F. Karg, High Efficiency CIGS Solar Modules, Energy Procedia,
15(2012)275-282.
[3] M.G.P. C. Steinhagen, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel,
Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost
Photovoltaics, J. Am. Chem. Soc., (2009) 12554-12555.
[4] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A.
Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid
Films, 517 (2009) 2455-2460.
[5] S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H.
Deligianni, A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell,
Advanced Energy Materials, 2 (2012) 253-259.
[6] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with
Earth-abundant liquid-processed absorber, Adv Mater, 22 (2010) E156-
159.
[7] D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi,
Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4
solar cell, Progress in Photovoltaics: Research and Applications, 20
(2012) 6-11.
[8] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Low
band gap liquid-processed CZTSe solar cell with 10.1% efficiency,
Energy & Environmental Science, 5 (2012) 7060.
[9] O.G. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar
cell with 8.4% power conversion efficiency using an earth-abundant
Cu2ZnSnS4 absorber, Prog. Photovolt.: Res. Appl., (2011).
[10] K.I. N. Nakayama, sprayed films of stannite Cu2ZnSnS4, (1996).
[11] N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of
Cu2ZnSnS4 thin films deposited by spray pyrolysis technique, Thin Solid
Films, 515 (2007) 5949-5952.
[12] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja,
Preparation and characterization of spray-deposited Cu2ZnSnS4 thin
films, Solar Energy Materials and Solar Cells, 93 (2009) 1230-1237.
[13] Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, V.S. Raja, Effect of copper salt
and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by
spray pyrolysis, physica status solidi (a), 207 (2010) 149-156.
[14] K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films
by sulfurizing sol–gel deposited precursors, Solar Energy Materials and
Solar Cells, 91 (2007) 1199-1201.
[15] M.Y. Yeh, C.C. Lee, D.S. Wuu, Preparation of Cu2ZnSnS4 thin film by
so-gel spincoated deposition, Advanced Materials Research, 79-82
(2009) 835-838.
[16] K.D. Lee, S.-W. Seo, D.-K. Lee, H. Kim, J.-h. Jeong, M.J. Ko, B. Kim,
D.H. Kim, J.Y. Kim, Preparation of Cu2ZnSnS4 thin films via
electrochemical deposition and rapid thermal annealing, Thin Solid
Films, 546 (2013) 294-298.
[17] B.A.P. S.C. Riha, A.L. Prieto, Solution-based synthesis and
characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc., 131 (2009) 12054-12055.
[18] C. Chory, F. Zutz, F. Witt, H. Borchert, J. Parisi, Synthesis and
characterization of Cu2ZnSnS4, physica status solidi (c), 7 (2010) 1486-
1488.
[19] Y. Wang, H. Gong, Cu2ZnSnS4 synthesized through a green and
economic process, Journal of Alloys and Compounds, 509 (2011) 9627-
9630.
[20] M. Cao, Y. Shen, A mild solvothermal route to kesterite quaternary
Cu2ZnSnS4 nanoparticles, Journal of Crystal Growth, 318 (2011) 1117-
1120.
[21] Y.-L. Zhou, W.-H. Zhou, Y.-F. Du, M. Li, S.-X. Wu, Sphere-like kesterite
Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method,
Materials Letters, 65 (2011) 1535-1537.
[22] M. Pal, N.R. Mathews, R.S. Gonzalez, X. Mathew, Synthesis of
Cu2ZnSnS4 nanocrystals by solvothermal method, Thin Solid Films, 535
(2013) 78-82.
[23] W. Xie, X. Jiang, C. Zou, D. Li, J. Zhang, J. Quan, L. Shao, Synthesis of
highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for
photovoltaic application, Physica E: Low-dimensional Systems and
Nanostructures, 45 (2012) 16-20.
[24] C. Li, M. Cao, J. Huang, L.J. Wang, Y. Shen, Mechanism study of
structure and morphology control of solvothermal synthesized
Cu2ZnSnS4 nanoparticles by using different sulfur precursors, Materials
Science in Semiconductor Processing, 31 (2015) 287-294.
[25] Y. Liu, J. Xu, Z. Ni, G. Fang, W. Tao, One-step sonochemical synthesis
route towards kesterite Cu2ZnSnS4 nanoparticles, Journal of Alloys and
Compounds, 630 (2015) 23-28.
[26] Y.-H. Lin, S. Das, C.-Y. Yang, J.-C. Sung, C.-H. Lu, Phase-controlled
synthesis of Cu2ZnSnS4 powders via the microwave-assisted
solvothermal route, Journal of Alloys and Compounds, 632 (2015) 354-
360.
[27] S. Bahramzadeh, H. Abdizadeh, M.R. Golobostanfard, Controlling the
morphology and properties of solvothermal synthesized Cu2ZnSnS4
nanoparticles by solvent type, Journal of Alloys and Compounds, 642
(2015) 124-130.
[28] C. Wang, C. Cheng, Y. Cao, W. Fang, L. Zhao, X. Xu, Synthesis of
Cu2ZnSnS4 Nanocrystallines by a Hydrothermal Route, Japanese Journal
of Applied Physics, 50 (2011) 065003.
[29] B.S.v. Ratna; Padhi, Pollution due to synthetic dyes toxicity &
carcinogenicity studies and remediation, Int. J. Environ. Sci., 3 (2012)
940–955.
[30] S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for
the interaction of light with noble metal-metal oxide semiconductor
nanostructures for various photophysical applications, Chem Soc Rev, 42
(2013) 8467-8493.
[31] K.N. ITO, T., Electrical and optical properties of sannite-type quaternary
semiconductor thin film., Jpn. J. Appl. Phys., 11 (1988) 2094-2097.
[32] S.C.P. Riha, B.A.; Prieto, A.L., Solution-Based Synthesis and
Characterization of Cu2ZnSnS4 Nanocrystals, J. Am. Chem. Soc., 131
(2009) 12054-12055.
[33] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic
degradation of dyes using TiO2-based photocatalysts: a review, J Hazard
Mater, 170 (2009) 520-529.
[34] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos,
P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari,
D.D. Dionysiou, A review on the visible light active titanium dioxide
photocatalysts for environmental applications, Applied Catalysis B:
Environmental, 125 (2012) 331-349.
[35] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of
organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
[36] A. Kumar, N. Mathur, Photocatalytic degradation of aniline at the
interface of TiO2 suspensions containing carbonate ions, J Colloid
Interface Sci, 300 (2006) 244-252.
[37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light
photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001)
269-271.
[38] M.V. Sathish, B.; Viswanath, R.P.; Gopinath, C.S., Synthesis,
characterization, electronic structure, and photocatalytic activity of
nitrogen-Doped TiO2 nanocatalyst., Chem. Mater., 17 (2015) 6349–6353.
[39] W.H. Leng, Z. Zhang, J.Q. Zhang, Photoelectrocatalytic degradation of
aniline over rutile TiO2/Ti electrode thermally formed at 600 °C, Journal
of Molecular Catalysis A: Chemical, 206 (2003) 239-252.
[40] G.S. Williams, B.; Kamat, P.V, TiO2-graphene nanocomposites uv-
assisted photocatalytic reduction of graphene oxide., Am. Chem. Soc.
Nano, 7 (2008) 1487–1491.
[41] K.F. Awazu, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.;
Yoshida, N.; Watanabe, T., A plasmonic photocatalyst consisting of silver
nanoparticles embedded in titanium dioxide.v, J. Am. Chem. Soc, 130
(2008) 1676–1680.
[42] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H.
Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, An orthophosphate
semiconductor with photooxidation properties under visible-light
irradiation, Nat Mater, 9 (2010) 559-564.
[43] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of
Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible
Light Photocatalytic Performance, ACS Catalysis, 3 (2013) 363-369.
[44] Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang, Enhanced photocatalytic activity
and structural stability by hybridizing Ag3PO4 nanospheres with
graphene oxide sheets, Phys Chem Chem Phys, 14 (2012) 15657-15665.
[45] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F.
Watanabe, J. Cui, T.P. Chen, Pure and stable metallic phase molybdenum
disulfide nanosheets for hydrogen evolution reaction, Nat Commun, 7
(2016) 10672.
[46] L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng,
Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to
Improve Capacitances of Supercapacitors, Materials Research Letters, 3
(2015) 177-183.
[47] X. Yu, A. Shavel, X. An, Z. Luo, M. Ibanez, A. Cabot, Cu2ZnSnS4-Pt and
Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water
splitting and pollutant degradation, J Am Chem Soc, 136 (2014) 9236-
9239.
[48] F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S.
Ikeda, Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable
Photocathode for Water Reduction under Sunlight Radiation, J Am Chem
Soc, 137 (2015) 13691-13697.
[49] Y. Xia, B. Wang, X. Zhao, G. Wang, H. Wang, Core-shell composite of
hierarchical MoS2 nanosheets supported on graphitized hollow carbon
microspheres for high performance lithium-ion batteries, Electrochimica
Acta, 187 (2016) 55-64.
[50] E. Ha, W. Liu, L. Wang, H.W. Man, L. Hu, S.C. Tsang, C.T. Chan, W.M.
Kwok, L.Y. Lee, K.Y. Wong, Cu2ZnSnS4/MoS2-Reduced Graphene
Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced
Photocatalytic Hydrogen Generation, Sci Rep, 7 (2017) 39411.
[51] G. Gogoi, S. Arora, N. Vinothkumar, M. De, M. Qureshi, Quaternary
semiconductor Cu2ZnSnS4 loaded with MoS2 as a co-catalyst for
enhanced photo-catalytic activity, RSC Advances, 5 (2015) 40475-
40483.
[52] G.E.E. S. D. Stranks, G. Grancini, C. Menelaou, M. J. P. Alcocer, T.
Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole diffusion
lengths exceeding 1 micrometer in an organometal trihalide Perovskite
absorber, Science, 342 (2013) 341-344.
[53] N.M. G. C. Xing, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gr¨atzel, S.
Mhaisalkar, T. C. Sum, Long-Range balanced electronand hole-transport
lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344-
347.
[54] C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz,
High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide
Perovskites, Advanced Materials, 26 (2014) 1584-1589.
[55] J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C.
Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid
solar cells, Adv Mater, 25 (2013) 3727-3732.
[56] Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J.
Hamers, J.C. Wright, S. Jin, Solution growth of single crystal
methylammonium lead halide perovskite nanostructures for
optoelectronic and photovoltaic applications, J Am Chem Soc, 137
(2015) 5810-5818.
[57] T.Z. F. Xu, G. Li, Y. Zhao,, Synergetic Effect of Chloride Doping and
CH3NH3PbCl3 Perovskite-Based Solar Cells ChemSusChem Comm., 10
(2017) 2365-2369.
[58] K.T. A. Kojima, Y. Shirai, T. Miyasaka,, Organometal Halide Perovskites
as Visible-Light Sensitizers for Photovoltaic cells, J. Am. Chem. Soc.,
131 (2009) 6050-6051.
[59] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J.
Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for
efficient planar heterojunction solar cells, Energy & Environmental
Science, 7 (2014) 982.
[60] S.S. Mali, C.K. Hong, A.I. Inamdar, H. Im, S.E. Shim, Efficient planar n-
i-p type heterojunction flexible perovskite solar cells with sputtered TiO2
electron transporting layers, Nanoscale, 9 (2017) 3095-3104.
[61] J.T. M. M. Lee, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient
hybrid solar cells based on meso-superstructured organometal halide
Perovskites, Science, 338 (2012) 643-648.
[62] D.-H. Ma, W.-J. Zhang, Z.-Y. Jiang, D.-Y. Song, L. Zhang, W. Yu,
Enhanced Photovoltaic Performance of the Inverted Planar Perovskite
Solar Cells by Using Mixed-Phase Crystalline Perovskite Film with
Trace Amounts of PbI2 as an Absorption Layer, The Journal of Physical
Chemistry C, 121 (2017) 22607-22620.
[63] L. Xu, H. Liu, W. Qiu, K. Xue, X. Liu, J. Wang, H. Zhang, W. Huang,
High-Performance and Hysteresis-Free Planar Solar Cells with PC71BM
and C60 Composed Structure Prepared Irrespective of Humidity, ACS
Sustainable Chemistry & Engineering, 5 (2017) 9718-9724.
[64] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G.
Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-
assisted solution process, J Am Chem Soc, 136 (2014) 622-625.
[65] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, C. Xu, Y. Lu, Chlorine-
conducted defect repairment and seed crystal-mediated vapor growth
process for controllable preparation of efficient and stable perovskite
solar cells, Journal of Materials Chemistry A, 3 (2015) 22949-22959.
[66] S.R. Raga, L.K. Ono, Y. Qi, Rapid perovskite formation by CH3NH2
gas-induced intercalation and reaction of PbI2, Journal of Materials
Chemistry A, 4 (2016) 2494-2500.
[67] M. Lv, J. Zhu, Y. Huang, Y. Li, Z. Shao, Y. Xu, S. Dai, Colloidal CuInS2
Quantum Dots as Inorganic Hole-Transporting Material in Perovskite
Solar Cells, ACS Appl Mater Interfaces, 7 (2015) 17482-17488.
[68] T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, S. Guha,
Perovskite-kesterite monolithic tandem solar cells with high open-circuit
voltage, Applied Physics Letters, 105 (2014) 173902.
[69] M. Yuan, X. Zhang, J. Kong, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S.
Wu, D. Kou, Controlling the Band Gap to Improve Open-Circuit Voltage
in Metal Chalcogenide based Perovskite Solar Cells, Electrochimica
Acta, 215 (2016) 374-379.
[70] S. Gonzalez-Carrero, G.M. Espallargas, R.E. Galian, J. Pérez-Prieto,
Blue-luminescent organic lead bromide perovskites: highly dispersible
and photostable materials, Journal of Materials Chemistry A, 3 (2015)
14039-14045.
[71] O. Vybornyi, S. Yakunin, M.V. Kovalenko, Polar-solvent-free colloidal
synthesis of highly luminescent alkylammonium lead halide perovskite
nanocrystals, Nanoscale, 8 (2016) 6278-6283.
[72] Nanotechnology in energy applications(2005), (2005).
[73] U. Mehmood, I.A. Hussein, K. Harrabi, M.B. Mekki, S. Ahmed, N.
Tabet, Hybrid TiO2 –multiwall carbon nanotube (MWCNTs)
photoanodes for efficient dye sensitized solar cells (DSSCs), Solar
Energy Materials and Solar Cells, 140 (2015) 174-179.
[74] P.V.K. I. Bedjat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of
Ti 0 2 -Capped SnO2 Nanocrystalli tes, J. Phys. Chem, 99 (1995) 9182.
[75] http://www.jianghutio2.com/eproducts/100.html.
[76] A. Kudo, H. Kato, I. Tsuji, Strategies for the Development of Visible-
light-driven Photocatalysts for Water Splitting, Chemistry Letters, 33
(2004) 1534-1539.
[77] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National
Renewable Energy Liboratory, NREL, accessed July, 1, 2017.).
[78] W. Xu, L. Liu, L. Yang, P. Shen, B. Sun, J.A. McLeod, Dissociation of
Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar
Cells, Nano Lett, 16 (2016) 4720-4725.
[79] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L.
D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D.
Angelis, H.-G. Boyen, Intrinsic Thermal Instability of Methylammonium
Lead Trihalide Perovskite, Advanced Energy Materials, 5 (2015)
1500477.
[80] N.M. G. Xing, S. Sun, S. Sien Lim, Y. M. Lam, M. Grätzel, S.
Mhaisalkar, T. C. Sum, Long-range balanced electron-and hole-transport
lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344.
[81] W.W.-N. M. P. Paranthaman, R. N. Bhattacharya, Semiconductor
Materials for solar Photovoltaic Cells.
[82] A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, H.K. Lee, K.Y.
Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Synthesis and
characterization of Cu2ZnSnS4 thin films grown by PLD: Solar cells,
Journal of Alloys and Compounds, 509 (2011) 7439-7446.
[83] T.N. K. Ito, Electrical and Optical Properties of Stannite-Type, Jpn. J.
Appl. Phys., 27 (1988) 2094-2097.
[84] K.V. Gurav, S.M. Pawar, S.W. Shin, M.P. suryawanshi, G.L. Agawane,
P.S. Patil, J.-H. Moon, J.H. Yun, J.H. Kim, Electrosynthesis of CZTS
films by sulfurization of CZT precursor: Effect of soft annealing
treatment, Applied Surface Science, 283 (2013) 74-80.
[85] K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition
dependence of morphological and optical properties of Cu2ZnSnS4 thin
films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar
cell efficiency, Solar Energy Materials and Solar Cells, 95 (2011) 838-
842.
[86] W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, I. Malajovich, H.D.
Rosenfeld, K.R. Choudhury, Studies of the fine-grain sub-layer in the
printed CZTSSe photovoltaic devices, Journal of Materials Chemistry C,
2 (2014) 3777.
[87] C.C.L. M. Y. Yeh, D. S. Wuu, Influences of synthesizing temperatures on
the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition,
J. Sol-Gel Sci. Technol., 52 (2009) 65.
[88] S.R.S. Hall, J. T.; Stewart, J. M., Cu2(Zn, Fe)SnS4 and stannite, Cu2(Fe,
Zn)SnS4 structural similar but distinct minerals, Can. Miner., 16 (1978)
131-137.
[89] S. Schorr, Structural aspects of adamantine like multinary chalcogenides,
Thin Solid Films, 515 (2007) 5985-5991.
[90] M. Ichimura, Y. Nakashima, Analysis of Atomic and Electronic
Structures of Cu2ZnSnS4 Based on First-Principle Calculation, Japanese
Journal of Applied Physics, 48 (2009) 090202.
[91] K.N. Ito, T., Electrical and optical properties of stannite-type quaternary
semiconductor thin films, Jpn. J. Appl. Phys., 27 (1988) 2094.
[92] M.Y. Yeh, C.C. Lee, D.S. Wuu, Influences of synthesizing temperatures
on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated
deposition, Journal of Sol-Gel Science and Technology, 52 (2009) 65-68.
[93] R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic
materials, Chemical Society Reviews, 31 (2002) 230-238.
[94] A. Rabenau, The role of hydrothermal synthesis in preparative chemistry,
Angew. Chem. Int. Ed. Engl., 24 (1985) 1026-1040.
[95] A. Fujishima, Electrochemical photolysis of water at a semiconductor
electrode, 238 (1972) 37-38.
[96] S.N.a.A.J.B. Frank, Heterogeneous photocatalytic oxidation of cyanide
ion in aqueous solutions at titanium dioxide powder, Journal of the
American Chemical Society, 99 (1977) 303-304.
[97] http://www.ifuun.com/a201801068633904/.
[98] X. Chia, A.Y. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry
of Nanostructured Layered Transition-Metal Dichalcogenides, Chem
Rev, 115 (2015) 11941-11966.
[99] P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee,
Electrospray technique in fabricating perovskite-based hybrid solar cells
under ambient conditions, RSC Advances, 7 (2017) 10985-10991.
[100] I.Y. Bu, Y.-S. Fu, J.-F. Li, T.-F. Guo, Large-area electrospray-deposited
nanocrystalline CuXO hole transport layer for perovskite solar cells,
RSC Advances, 7 (2017) 46651-46656.
[101] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide
perovskites as visible-light sensitizers for photovoltaic cells, Journal of
the American Chemical Society, 131 (2009) 6050-6051.
[102] W. Xu, L. Liu, L. Yang, P. Shen, B. Sun, J.A. McLeod, Dissociation of
Methylammonium Cations in Hybrid Organic–Inorganic Perovskite
Solar Cells, Nano letters, 16 (2016) 4720-4725.
[103] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L.
D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi,
Intrinsic thermal instability of methylammonium lead trihalide
perovskite, Advanced Energy Materials, 5 (2015).
[104] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K.
Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-
performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-
319.
[105] E.V. M. Sima, M. Sima, Lead acetate film as precursor for two-step
deposition of CH 3 NH 3 PbI 3, 89 (2017) 89-96.
[106] S.L. Kwon, Infiltration of methylammonium metal halide in highly
porous membranes using sol-gel-derived coating method, Applied
Surface Science, 416 (2017) 96-102.
[107] M.M.L. J. M. Ball, A. Hey, H. J. Snaith, Low-temperature processed
meso-superstructured to thin-film perovskite solar cells, Energy &
Environmental Science, 6 (2013) 1739-1743.
[108] J.M.B. P. Docampo, M. Darwich, G. E. Eperon, H. J. Snaith, Efficient
organometal trihalide perovskite planar-heterojunction solar cells on
flexible polymer substrates, Nature communications, 4 (2013).
[109] P.W. Liang, Additive enhanced crystallization of solution‐processed
perovskite for highly efficient planar‐heterojunction solar cells,
Advanced materials, 26 (2014) 3748-3754.
[110] F.W.a.L. Zhu, Fast preparation of compact and stable perovskite films
derived from PbCl2 and Pb(Ac)2·3H2O mixed-lead-halide precursors,
Solar Energy Materials and Solar Cells, 167 (2017) 1-6.
[111] A.J.P. A. T. Barrows, C. K. Kwak, A. D. Dunbar, A. R. Buckley, D. G.
Lidzey, Efficient planar heterojunction mixed-halide perovskite solar
cells deposited via spray-deposition, Energy & Environmental Science,
7 (2014) 2944-2950.
[112] Y.-S.F. I. Y. Bu, J.-F. Li, T.-F. Guo, Large-area electrospray-deposited
nanocrystalline CuxO hole transport layer for perovskite solar cells,
RSC Advances, 7 (2017) 46651-46656.
[113] Y.-Y.C. P.-Y. Lin, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee, Electrospray
technique in fabricating perovskite-based hybrid solar cells under
ambient conditions, RSC Advances, 7 (2017) 10985-10991.