簡易檢索 / 詳目顯示

研究生: 林世仁
Lin, Shih-Jen
論文名稱: 窄能隙四元銅鋅錫硫複合物於光催化及鈣鈦礦太陽能電池之應用
Narrow bandgap Cu2ZnSnS4 compound for use in photodegradation and perovskite solar cell
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 133
中文關鍵詞: 鋅黃錫礦銅鋅錫硫水熱法光催化再復合高吸光能力再結晶鈣鈦礦太陽能電池
外文關鍵詞: kesterite, Cu2ZnSnS4, hydrothermal, photocatalytic, recombination, high absorption, recrystallization, Perovskite solar cells
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以傳統水熱法製備高純度鋅黃錫礦銅鋅錫硫(Kesterite, Cu2ZnSnS4,KS CZTS)奈米粉體,藉由提昇反應物硫脲(thiourea, Tu)的濃度以減少二次相產生,如硫化銅(Cu2-xS)、硫化鋅(ZnS)、硫化亞錫(SnS)、硫化錫(SnS2)及硫化錫銅(Cu2SnS3) 以及添加螯合劑二乙基三胺(diethylenetriamine, DETA)的影響,藉其立體結構及螯合金屬的特性,促使改變反應機制,能更容易合成單一相高結晶的四元合金KS CZTS奈米粉體。
    第二階段將CZTS粉體應用在光催化上,以微波輔助水熱法混合不同百分比的硝酸銀(silvernitride, AgNO3),使銀顆粒成長在CZTS粉體表面,以提高電子的傳導能力,其次再用傳統水熱法合成較高比表面積1T-2H相的二硫化鉬(molybdenum disulfide,MoS2)粉體,最終形成一複合物Ag-CZTS-MoS2,在能隙結構上有適當的匹配,使其能有效的提供電子電洞對的分離且避免再復合以提升光降解的能力。
    第三階段是運用CZTS的高寬廣光譜吸收的能力,混合於導電高分子poly (3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS)當作p-i-n結構平板式鈣鈦礦太陽能電池的電洞傳輸層,不僅提供載子的躍遷及抑制再復合的行為外,亦可以增加高吸光能力,以及在調配三鹵化甲胺鉛(CH3NH3PbI3,MAPbI3)的前驅物上,選用非極性溶劑,用自然沈積法在常溫的大氣環境下進行合成,快速成長出奈米的立方晶體並形成緻密堆積的薄膜,接著利用甲胺氣體輔助經由晶界反應增加薄膜的再結晶性,我們應證了此製程的設計能有效克服鈣鈦礦先天易潮解的現象,能延長鈣鈦礦太陽能電池的壽命。

    In this research we study the mechanism when using a conventional hydrothermal method for the synthesis of Cu2ZnSnS4 NPs well indexed to the high purity single kesterite phase for use in CZTS solar cells. An increased Tu concentration reduces the binary and ternary phases, while DETA serves not only to carry out chelating to form the precursors of [ZnSnS4(DETA)]2- and Cu2(DETA)2+, but also changes the particle shape from irregular sheets to uniform spheres.
    In the second part, we discuss the use of a conventional hydrothermal method for the synthesis of Cu2ZnSnS4 powders well indexed into a high-purity KS phase. Furthermore, hybridized Ag/CZTS was successfully synthesized through a microwave-assisted hydrothermal process using water as the solvent for such processes as ultrasound and microwave irradiation to facilitate chemical reactions. It was found that the photocatalytic performance of the CZTS powders was greatly improved by the addition 1 and 2 wt% of Ag NPs deposited on the surface of the CZTS acting as the electron traps of the matrix. This prevented the recombination of electron-hole pairs and improved the charge transfer processes by hybridizing the 1T-2H MoS2 in the structure, thus increasing the light harvesting in photocatalysis due to the broad light absorption range.
    In the third part, we fabricated MA+ and PbI3- precursors with polar-free solvents. The obtained sample show that MA vapor-assisted method increase the crystallinity and more regular morphology. Furthermore, it was found that adding 1 wt% CZTS serves not only increased the light harvesting broad light absorption region from visible to near-infrared, but also prevented the recombination of electron-hole pairs and improved the charge transfer processes. Furthermore, the enhancement photovoltaic performance of the device was improved by the addition 1 wt% CZTS NPs hybrid PEDOT:PSS with MA vapor-assisted exhibited the highest PCE. The results indicate that the solution-precipitation technique in this work could be a promising method to achieve large-area deposition of a perovskite active layer for mass production.

    中文摘要 I 英文摘要 III EXTENDED ABSTRACT IV 誌謝 XXII 目錄 XXIV 圖目錄 XXIX 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池的種類 3 1.3 光催化的作用 5 1.4 有機鹵化金屬鈣鈦礦太陽能電池 7 1.5 研究動機 9 第二章 文獻回顧 10 2.1 四元合金太陽能電池的發展歷史 10 2.1.1 銅銦鎵硒(CuIn1-xGaxSe2, CIGS)太陽能電池 10 2.1.2 銅鋅錫硫(Cu2ZnSnS4, CZTS)太陽能電池 13 2.2 Cu2ZnSnS4 粉體製備方法 17 2.2.1 Cu2ZnSnS4材料特性 17 2.2.2 共沉澱法 19 2.2.3 溶膠凝膠法 24 2.2.4 其他製備方法 27 2.2.5 水熱法 27 2.3 光催化的作用 35 2.3.1 光降解的機制 36 2.3.2 二氧化鈦(TiO2)的光催化 36 2.3.3 摻雜物對光降解的影響 38 2.3.4 銅鋅錫硫及二硫化鉬對光降解的能力 40 2.4 鈣鈦礦薄膜製備方法 46 2.4.1 二階段沈積法(Two-step deposition) 46 2.4.2 一階段沈積法(One-step deposition) 50 第三章 實驗步驟及量測方法 52 3.1 Cu2ZnSnS4奈米粉體製備 52 3.2 Cu2ZnSnS4-Ag-MoS2複合物製備 53 3.3 CH3NH3PbI3 奈米顆粒沈積 54 3.4 結構特性分析 56 3.4.1 XRD晶體結構分析 56 3.4.2 Raman光譜分析 58 3.4.3 XPS化學鍵結分析 59 3.5 表面分析 60 3.5.1 FESEM形貌分析 60 3.5.2 TEM形貌分析 61 3.5.3 UV-Vis光學分析 62 3.5.4 PL光譜分析 62 3.5.5 BET比表面積及孔徑分析 63 3.5.6 AFM表面粗糙度分析 64 3.6 元件光電特性量測 65 3.6.1 J-V 轉換效率分析 65 3.6.2 IPCE量子效率分析 66 第四章 合成高純度銅鋅錫硫四元化合物之探討 67 4.1.1 製備銅鋅錫硫四元化合物機制探討 68 4.1.2 電子光譜表面化學分析 74 4.1.3 不同硫脲濃度及添加DETA形貌分析 77 4.1.4 微結構分析 79 4.1.5 吸收光譜分析 80 第五章 銅鋅錫硫-銀-二硫化鉬複合物對光降解能力之行為 81 5.1.1 CZTS-Ag-MoS2複合物結構分析 81 5.1.2 CZTS-Ag-MoS2複合物形貌及微結構分析 82 5.1.3 表面特性探討 87 5.1.4 光降解能力分析 97 第六章摻雜銅鋅錫硫對鈣鈦礦太陽能電池的影響 101 6.1.1 MAPbI3與MA輔助之結構分析 101 6.1.2 MAPbI3 NCs形貌及微結構分析 103 6.1.3 MAPbI3 NCs薄膜層光譜及能隙結構分析 106 6.1.4 光伏效應分析 109 第七章 結論 112 未來展望 114 參考文獻 115 附錄 125

    [1] T.Y. R. Kamada, S. Adachi, A. Handa, K. F. Tai, T. Kato, H.
    Sugimo,NewWorld Record Cu(In,Ga)(Se,S)2 Thin Film Solar Cell
    Efficiency Beyond 22%, In: Proceedings of IEEE 43rd Photovoltaic
    SpecialistsConference (PVSC) Portland, (2016) 1287.
    [2] F. Karg, High Efficiency CIGS Solar Modules, Energy Procedia,
    15(2012)275-282.
    [3] M.G.P. C. Steinhagen, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel,
    Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost
    Photovoltaics, J. Am. Chem. Soc., (2009) 12554-12555.
    [4] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A.
    Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid
    Films, 517 (2009) 2455-2460.
    [5] S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H.
    Deligianni, A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell,
    Advanced Energy Materials, 2 (2012) 253-259.
    [6] T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with
    Earth-abundant liquid-processed absorber, Adv Mater, 22 (2010) E156-
    159.
    [7] D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi,
    Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4
    solar cell, Progress in Photovoltaics: Research and Applications, 20
    (2012) 6-11.
    [8] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Low
    band gap liquid-processed CZTSe solar cell with 10.1% efficiency,
    Energy & Environmental Science, 5 (2012) 7060.
    [9] O.G. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar
    cell with 8.4% power conversion efficiency using an earth-abundant
    Cu2ZnSnS4 absorber, Prog. Photovolt.: Res. Appl., (2011).
    [10] K.I. N. Nakayama, sprayed films of stannite Cu2ZnSnS4, (1996).
    [11] N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of
    Cu2ZnSnS4 thin films deposited by spray pyrolysis technique, Thin Solid
    Films, 515 (2007) 5949-5952.
    [12] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja,
    Preparation and characterization of spray-deposited Cu2ZnSnS4 thin
    films, Solar Energy Materials and Solar Cells, 93 (2009) 1230-1237.
    [13] Y.B.K. Kumar, P.U. Bhaskar, G.S. Babu, V.S. Raja, Effect of copper salt
    and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by
    spray pyrolysis, physica status solidi (a), 207 (2010) 149-156.
    [14] K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films
    by sulfurizing sol–gel deposited precursors, Solar Energy Materials and
    Solar Cells, 91 (2007) 1199-1201.
    [15] M.Y. Yeh, C.C. Lee, D.S. Wuu, Preparation of Cu2ZnSnS4 thin film by
    so-gel spincoated deposition, Advanced Materials Research, 79-82
    (2009) 835-838.
    [16] K.D. Lee, S.-W. Seo, D.-K. Lee, H. Kim, J.-h. Jeong, M.J. Ko, B. Kim,
    D.H. Kim, J.Y. Kim, Preparation of Cu2ZnSnS4 thin films via
    electrochemical deposition and rapid thermal annealing, Thin Solid
    Films, 546 (2013) 294-298.
    [17] B.A.P. S.C. Riha, A.L. Prieto, Solution-based synthesis and
    characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc., 131 (2009) 12054-12055.
    [18] C. Chory, F. Zutz, F. Witt, H. Borchert, J. Parisi, Synthesis and
    characterization of Cu2ZnSnS4, physica status solidi (c), 7 (2010) 1486-
    1488.
    [19] Y. Wang, H. Gong, Cu2ZnSnS4 synthesized through a green and
    economic process, Journal of Alloys and Compounds, 509 (2011) 9627-
    9630.
    [20] M. Cao, Y. Shen, A mild solvothermal route to kesterite quaternary
    Cu2ZnSnS4 nanoparticles, Journal of Crystal Growth, 318 (2011) 1117-
    1120.
    [21] Y.-L. Zhou, W.-H. Zhou, Y.-F. Du, M. Li, S.-X. Wu, Sphere-like kesterite
    Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method,
    Materials Letters, 65 (2011) 1535-1537.
    [22] M. Pal, N.R. Mathews, R.S. Gonzalez, X. Mathew, Synthesis of
    Cu2ZnSnS4 nanocrystals by solvothermal method, Thin Solid Films, 535
    (2013) 78-82.
    [23] W. Xie, X. Jiang, C. Zou, D. Li, J. Zhang, J. Quan, L. Shao, Synthesis of
    highly dispersed Cu2ZnSnS4 nanoparticles by solvothermal method for
    photovoltaic application, Physica E: Low-dimensional Systems and
    Nanostructures, 45 (2012) 16-20.
    [24] C. Li, M. Cao, J. Huang, L.J. Wang, Y. Shen, Mechanism study of
    structure and morphology control of solvothermal synthesized
    Cu2ZnSnS4 nanoparticles by using different sulfur precursors, Materials
    Science in Semiconductor Processing, 31 (2015) 287-294.
    [25] Y. Liu, J. Xu, Z. Ni, G. Fang, W. Tao, One-step sonochemical synthesis
    route towards kesterite Cu2ZnSnS4 nanoparticles, Journal of Alloys and
    Compounds, 630 (2015) 23-28.
    [26] Y.-H. Lin, S. Das, C.-Y. Yang, J.-C. Sung, C.-H. Lu, Phase-controlled
    synthesis of Cu2ZnSnS4 powders via the microwave-assisted
    solvothermal route, Journal of Alloys and Compounds, 632 (2015) 354-
    360.
    [27] S. Bahramzadeh, H. Abdizadeh, M.R. Golobostanfard, Controlling the
    morphology and properties of solvothermal synthesized Cu2ZnSnS4
    nanoparticles by solvent type, Journal of Alloys and Compounds, 642
    (2015) 124-130.
    [28] C. Wang, C. Cheng, Y. Cao, W. Fang, L. Zhao, X. Xu, Synthesis of
    Cu2ZnSnS4 Nanocrystallines by a Hydrothermal Route, Japanese Journal
    of Applied Physics, 50 (2011) 065003.
    [29] B.S.v. Ratna; Padhi, Pollution due to synthetic dyes toxicity &
    carcinogenicity studies and remediation, Int. J. Environ. Sci., 3 (2012)
    940–955.
    [30] S.T. Kochuveedu, Y.H. Jang, D.H. Kim, A study on the mechanism for
    the interaction of light with noble metal-metal oxide semiconductor
    nanostructures for various photophysical applications, Chem Soc Rev, 42
    (2013) 8467-8493.
    [31] K.N. ITO, T., Electrical and optical properties of sannite-type quaternary
    semiconductor thin film., Jpn. J. Appl. Phys., 11 (1988) 2094-2097.
    [32] S.C.P. Riha, B.A.; Prieto, A.L., Solution-Based Synthesis and
    Characterization of Cu2ZnSnS4 Nanocrystals, J. Am. Chem. Soc., 131
    (2009) 12054-12055.
    [33] U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic
    degradation of dyes using TiO2-based photocatalysts: a review, J Hazard
    Mater, 170 (2009) 520-529.
    [34] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos,
    P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari,
    D.D. Dionysiou, A review on the visible light active titanium dioxide
    photocatalysts for environmental applications, Applied Catalysis B:
    Environmental, 125 (2012) 331-349.
    [35] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of
    organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
    [36] A. Kumar, N. Mathur, Photocatalytic degradation of aniline at the
    interface of TiO2 suspensions containing carbonate ions, J Colloid
    Interface Sci, 300 (2006) 244-252.
    [37] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light
    photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001)
    269-271.
    [38] M.V. Sathish, B.; Viswanath, R.P.; Gopinath, C.S., Synthesis,
    characterization, electronic structure, and photocatalytic activity of
    nitrogen-Doped TiO2 nanocatalyst., Chem. Mater., 17 (2015) 6349–6353.
    [39] W.H. Leng, Z. Zhang, J.Q. Zhang, Photoelectrocatalytic degradation of
    aniline over rutile TiO2/Ti electrode thermally formed at 600 °C, Journal
    of Molecular Catalysis A: Chemical, 206 (2003) 239-252.
    [40] G.S. Williams, B.; Kamat, P.V, TiO2-graphene nanocomposites uv-
    assisted photocatalytic reduction of graphene oxide., Am. Chem. Soc.
    Nano, 7 (2008) 1487–1491.
    [41] K.F. Awazu, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.;
    Yoshida, N.; Watanabe, T., A plasmonic photocatalyst consisting of silver
    nanoparticles embedded in titanium dioxide.v, J. Am. Chem. Soc, 130
    (2008) 1676–1680.
    [42] Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H.
    Yang, J. Cao, W. Luo, Z. Li, Y. Liu, R.L. Withers, An orthophosphate
    semiconductor with photooxidation properties under visible-light
    irradiation, Nat Mater, 9 (2010) 559-564.
    [43] X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, H. Tang, Fabrication of
    Ag3PO4-Graphene Composites with Highly Efficient and Stable Visible
    Light Photocatalytic Performance, ACS Catalysis, 3 (2013) 363-369.
    [44] Q. Liang, Y. Shi, W. Ma, Z. Li, X. Yang, Enhanced photocatalytic activity
    and structural stability by hybridizing Ag3PO4 nanospheres with
    graphene oxide sheets, Phys Chem Chem Phys, 14 (2012) 15657-15665.
    [45] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F.
    Watanabe, J. Cui, T.P. Chen, Pure and stable metallic phase molybdenum
    disulfide nanosheets for hydrogen evolution reaction, Nat Commun, 7
    (2016) 10672.
    [46] L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng,
    Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to
    Improve Capacitances of Supercapacitors, Materials Research Letters, 3
    (2015) 177-183.
    [47] X. Yu, A. Shavel, X. An, Z. Luo, M. Ibanez, A. Cabot, Cu2ZnSnS4-Pt and
    Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water
    splitting and pollutant degradation, J Am Chem Soc, 136 (2014) 9236-
    9239.
    [48] F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen, S.
    Ikeda, Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable
    Photocathode for Water Reduction under Sunlight Radiation, J Am Chem
    Soc, 137 (2015) 13691-13697.
    [49] Y. Xia, B. Wang, X. Zhao, G. Wang, H. Wang, Core-shell composite of
    hierarchical MoS2 nanosheets supported on graphitized hollow carbon
    microspheres for high performance lithium-ion batteries, Electrochimica
    Acta, 187 (2016) 55-64.
    [50] E. Ha, W. Liu, L. Wang, H.W. Man, L. Hu, S.C. Tsang, C.T. Chan, W.M.
    Kwok, L.Y. Lee, K.Y. Wong, Cu2ZnSnS4/MoS2-Reduced Graphene
    Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced
    Photocatalytic Hydrogen Generation, Sci Rep, 7 (2017) 39411.
    [51] G. Gogoi, S. Arora, N. Vinothkumar, M. De, M. Qureshi, Quaternary
    semiconductor Cu2ZnSnS4 loaded with MoS2 as a co-catalyst for
    enhanced photo-catalytic activity, RSC Advances, 5 (2015) 40475-
    40483.
    [52] G.E.E. S. D. Stranks, G. Grancini, C. Menelaou, M. J. P. Alcocer, T.
    Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole diffusion
    lengths exceeding 1 micrometer in an organometal trihalide Perovskite
    absorber, Science, 342 (2013) 341-344.
    [53] N.M. G. C. Xing, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gr¨atzel, S.
    Mhaisalkar, T. C. Sum, Long-Range balanced electronand hole-transport
    lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344-
    347.
    [54] C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz,
    High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide
    Perovskites, Advanced Materials, 26 (2014) 1584-1589.
    [55] J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, T.C.
    Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid
    solar cells, Adv Mater, 25 (2013) 3727-3732.
    [56] Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J.
    Hamers, J.C. Wright, S. Jin, Solution growth of single crystal
    methylammonium lead halide perovskite nanostructures for
    optoelectronic and photovoltaic applications, J Am Chem Soc, 137
    (2015) 5810-5818.
    [57] T.Z. F. Xu, G. Li, Y. Zhao,, Synergetic Effect of Chloride Doping and
    CH3NH3PbCl3 Perovskite-Based Solar Cells ChemSusChem Comm., 10
    (2017) 2365-2369.
    [58] K.T. A. Kojima, Y. Shirai, T. Miyasaka,, Organometal Halide Perovskites
    as Visible-Light Sensitizers for Photovoltaic cells, J. Am. Chem. Soc.,
    131 (2009) 6050-6051.
    [59] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J.
    Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for
    efficient planar heterojunction solar cells, Energy & Environmental
    Science, 7 (2014) 982.
    [60] S.S. Mali, C.K. Hong, A.I. Inamdar, H. Im, S.E. Shim, Efficient planar n-
    i-p type heterojunction flexible perovskite solar cells with sputtered TiO2
    electron transporting layers, Nanoscale, 9 (2017) 3095-3104.
    [61] J.T. M. M. Lee, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient
    hybrid solar cells based on meso-superstructured organometal halide
    Perovskites, Science, 338 (2012) 643-648.
    [62] D.-H. Ma, W.-J. Zhang, Z.-Y. Jiang, D.-Y. Song, L. Zhang, W. Yu,
    Enhanced Photovoltaic Performance of the Inverted Planar Perovskite
    Solar Cells by Using Mixed-Phase Crystalline Perovskite Film with
    Trace Amounts of PbI2 as an Absorption Layer, The Journal of Physical
    Chemistry C, 121 (2017) 22607-22620.
    [63] L. Xu, H. Liu, W. Qiu, K. Xue, X. Liu, J. Wang, H. Zhang, W. Huang,
    High-Performance and Hysteresis-Free Planar Solar Cells with PC71BM
    and C60 Composed Structure Prepared Irrespective of Humidity, ACS
    Sustainable Chemistry & Engineering, 5 (2017) 9718-9724.
    [64] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.H. Wang, Y. Liu, G.
    Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-
    assisted solution process, J Am Chem Soc, 136 (2014) 622-625.
    [65] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, C. Xu, Y. Lu, Chlorine-
    conducted defect repairment and seed crystal-mediated vapor growth
    process for controllable preparation of efficient and stable perovskite
    solar cells, Journal of Materials Chemistry A, 3 (2015) 22949-22959.
    [66] S.R. Raga, L.K. Ono, Y. Qi, Rapid perovskite formation by CH3NH2
    gas-induced intercalation and reaction of PbI2, Journal of Materials
    Chemistry A, 4 (2016) 2494-2500.
    [67] M. Lv, J. Zhu, Y. Huang, Y. Li, Z. Shao, Y. Xu, S. Dai, Colloidal CuInS2
    Quantum Dots as Inorganic Hole-Transporting Material in Perovskite
    Solar Cells, ACS Appl Mater Interfaces, 7 (2015) 17482-17488.
    [68] T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, S. Guha,
    Perovskite-kesterite monolithic tandem solar cells with high open-circuit
    voltage, Applied Physics Letters, 105 (2014) 173902.
    [69] M. Yuan, X. Zhang, J. Kong, W. Zhou, Z. Zhou, Q. Tian, Y. Meng, S.
    Wu, D. Kou, Controlling the Band Gap to Improve Open-Circuit Voltage
    in Metal Chalcogenide based Perovskite Solar Cells, Electrochimica
    Acta, 215 (2016) 374-379.
    [70] S. Gonzalez-Carrero, G.M. Espallargas, R.E. Galian, J. Pérez-Prieto,
    Blue-luminescent organic lead bromide perovskites: highly dispersible
    and photostable materials, Journal of Materials Chemistry A, 3 (2015)
    14039-14045.
    [71] O. Vybornyi, S. Yakunin, M.V. Kovalenko, Polar-solvent-free colloidal
    synthesis of highly luminescent alkylammonium lead halide perovskite
    nanocrystals, Nanoscale, 8 (2016) 6278-6283.
    [72] Nanotechnology in energy applications(2005), (2005).
    [73] U. Mehmood, I.A. Hussein, K. Harrabi, M.B. Mekki, S. Ahmed, N.
    Tabet, Hybrid TiO2 –multiwall carbon nanotube (MWCNTs)
    photoanodes for efficient dye sensitized solar cells (DSSCs), Solar
    Energy Materials and Solar Cells, 140 (2015) 174-179.
    [74] P.V.K. I. Bedjat, Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of
    Ti 0 2 -Capped SnO2 Nanocrystalli tes, J. Phys. Chem, 99 (1995) 9182.
    [75] http://www.jianghutio2.com/eproducts/100.html.
    [76] A. Kudo, H. Kato, I. Tsuji, Strategies for the Development of Visible-
    light-driven Photocatalysts for Water Splitting, Chemistry Letters, 33
    (2004) 1534-1539.
    [77] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National
    Renewable Energy Liboratory, NREL, accessed July, 1, 2017.).
    [78] W. Xu, L. Liu, L. Yang, P. Shen, B. Sun, J.A. McLeod, Dissociation of
    Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar
    Cells, Nano Lett, 16 (2016) 4720-4725.
    [79] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L.
    D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D.
    Angelis, H.-G. Boyen, Intrinsic Thermal Instability of Methylammonium
    Lead Trihalide Perovskite, Advanced Energy Materials, 5 (2015)
    1500477.
    [80] N.M. G. Xing, S. Sun, S. Sien Lim, Y. M. Lam, M. Grätzel, S.
    Mhaisalkar, T. C. Sum, Long-range balanced electron-and hole-transport
    lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344.
    [81] W.W.-N. M. P. Paranthaman, R. N. Bhattacharya, Semiconductor
    Materials for solar Photovoltaic Cells.
    [82] A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, H.K. Lee, K.Y.
    Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Synthesis and
    characterization of Cu2ZnSnS4 thin films grown by PLD: Solar cells,
    Journal of Alloys and Compounds, 509 (2011) 7439-7446.
    [83] T.N. K. Ito, Electrical and Optical Properties of Stannite-Type, Jpn. J.
    Appl. Phys., 27 (1988) 2094-2097.
    [84] K.V. Gurav, S.M. Pawar, S.W. Shin, M.P. suryawanshi, G.L. Agawane,
    P.S. Patil, J.-H. Moon, J.H. Yun, J.H. Kim, Electrosynthesis of CZTS
    films by sulfurization of CZT precursor: Effect of soft annealing
    treatment, Applied Surface Science, 283 (2013) 74-80.
    [85] K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Chemical composition
    dependence of morphological and optical properties of Cu2ZnSnS4 thin
    films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar
    cell efficiency, Solar Energy Materials and Solar Cells, 95 (2011) 838-
    842.
    [86] W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, I. Malajovich, H.D.
    Rosenfeld, K.R. Choudhury, Studies of the fine-grain sub-layer in the
    printed CZTSSe photovoltaic devices, Journal of Materials Chemistry C,
    2 (2014) 3777.
    [87] C.C.L. M. Y. Yeh, D. S. Wuu, Influences of synthesizing temperatures on
    the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated deposition,
    J. Sol-Gel Sci. Technol., 52 (2009) 65.
    [88] S.R.S. Hall, J. T.; Stewart, J. M., Cu2(Zn, Fe)SnS4 and stannite, Cu2(Fe,
    Zn)SnS4 structural similar but distinct minerals, Can. Miner., 16 (1978)
    131-137.
    [89] S. Schorr, Structural aspects of adamantine like multinary chalcogenides,
    Thin Solid Films, 515 (2007) 5985-5991.
    [90] M. Ichimura, Y. Nakashima, Analysis of Atomic and Electronic
    Structures of Cu2ZnSnS4 Based on First-Principle Calculation, Japanese
    Journal of Applied Physics, 48 (2009) 090202.
    [91] K.N. Ito, T., Electrical and optical properties of stannite-type quaternary
    semiconductor thin films, Jpn. J. Appl. Phys., 27 (1988) 2094.
    [92] M.Y. Yeh, C.C. Lee, D.S. Wuu, Influences of synthesizing temperatures
    on the properties of Cu2ZnSnS4 prepared by sol–gel spin-coated
    deposition, Journal of Sol-Gel Science and Technology, 52 (2009) 65-68.
    [93] R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic
    materials, Chemical Society Reviews, 31 (2002) 230-238.
    [94] A. Rabenau, The role of hydrothermal synthesis in preparative chemistry,
    Angew. Chem. Int. Ed. Engl., 24 (1985) 1026-1040.
    [95] A. Fujishima, Electrochemical photolysis of water at a semiconductor
    electrode, 238 (1972) 37-38.
    [96] S.N.a.A.J.B. Frank, Heterogeneous photocatalytic oxidation of cyanide
    ion in aqueous solutions at titanium dioxide powder, Journal of the
    American Chemical Society, 99 (1977) 303-304.
    [97] http://www.ifuun.com/a201801068633904/.
    [98] X. Chia, A.Y. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry
    of Nanostructured Layered Transition-Metal Dichalcogenides, Chem
    Rev, 115 (2015) 11941-11966.
    [99] P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee,
    Electrospray technique in fabricating perovskite-based hybrid solar cells
    under ambient conditions, RSC Advances, 7 (2017) 10985-10991.
    [100] I.Y. Bu, Y.-S. Fu, J.-F. Li, T.-F. Guo, Large-area electrospray-deposited
    nanocrystalline CuXO hole transport layer for perovskite solar cells,
    RSC Advances, 7 (2017) 46651-46656.
    [101] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide
    perovskites as visible-light sensitizers for photovoltaic cells, Journal of
    the American Chemical Society, 131 (2009) 6050-6051.
    [102] W. Xu, L. Liu, L. Yang, P. Shen, B. Sun, J.A. McLeod, Dissociation of
    Methylammonium Cations in Hybrid Organic–Inorganic Perovskite
    Solar Cells, Nano letters, 16 (2016) 4720-4725.
    [103] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L.
    D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi,
    Intrinsic thermal instability of methylammonium lead trihalide
    perovskite, Advanced Energy Materials, 5 (2015).
    [104] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K.
    Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-
    performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-
    319.
    [105] E.V. M. Sima, M. Sima, Lead acetate film as precursor for two-step
    deposition of CH 3 NH 3 PbI 3, 89 (2017) 89-96.
    [106] S.L. Kwon, Infiltration of methylammonium metal halide in highly
    porous membranes using sol-gel-derived coating method, Applied
    Surface Science, 416 (2017) 96-102.
    [107] M.M.L. J. M. Ball, A. Hey, H. J. Snaith, Low-temperature processed
    meso-superstructured to thin-film perovskite solar cells, Energy &
    Environmental Science, 6 (2013) 1739-1743.
    [108] J.M.B. P. Docampo, M. Darwich, G. E. Eperon, H. J. Snaith, Efficient
    organometal trihalide perovskite planar-heterojunction solar cells on
    flexible polymer substrates, Nature communications, 4 (2013).
    [109] P.W. Liang, Additive enhanced crystallization of solution‐processed
    perovskite for highly efficient planar‐heterojunction solar cells,
    Advanced materials, 26 (2014) 3748-3754.
    [110] F.W.a.L. Zhu, Fast preparation of compact and stable perovskite films
    derived from PbCl2 and Pb(Ac)2·3H2O mixed-lead-halide precursors,
    Solar Energy Materials and Solar Cells, 167 (2017) 1-6.
    [111] A.J.P. A. T. Barrows, C. K. Kwak, A. D. Dunbar, A. R. Buckley, D. G.
    Lidzey, Efficient planar heterojunction mixed-halide perovskite solar
    cells deposited via spray-deposition, Energy & Environmental Science,
    7 (2014) 2944-2950.
    [112] Y.-S.F. I. Y. Bu, J.-F. Li, T.-F. Guo, Large-area electrospray-deposited
    nanocrystalline CuxO hole transport layer for perovskite solar cells,
    RSC Advances, 7 (2017) 46651-46656.
    [113] Y.-Y.C. P.-Y. Lin, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee, Electrospray
    technique in fabricating perovskite-based hybrid solar cells under
    ambient conditions, RSC Advances, 7 (2017) 10985-10991.

    下載圖示 校內:立即公開
    校外:2023-08-01公開
    QR CODE