| 研究生: |
簡煥聲 Chien, Huan-Sheng |
|---|---|
| 論文名稱: |
電紡聚乳酸奈米纖維及其含奈米碳球之複合纖維:加工製程、纖維結構鑑定與導電性 Electrospun poly(D,L-lactic acid) nanofibers and composite nanofibers filled with carbon nanocapsules: processing, fiber characterization and electrical conductivity |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 電紡絲 、奈米纖維 、微結構 、奈米碳球 |
| 外文關鍵詞: | electrospinning, nano fibers, microstructure, carbon nanocapsules |
| 相關次數: | 點閱:161 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的第一部分是以二甲基甲醯胺(DMF)作為溶劑,配置不同濃度聚乳酸高分子(PDLLA)溶液,並利用可以控制溶液與環境溫度的電紡絲設備,製備不同纖維尺寸的奈米纖維。此一電紡設備利用熱夾套的方式將溶液溫度控制於25-104 oC之間,同時利用遠紅外線加熱設備控制環境最高溫度達110 oC,探討溶液性質對於電紡過程中泰勒錐/液柱/纖維(cone/jet/fiber)型態的變化,同時利用遠紅外線光譜儀(FTIR)、小角度X光繞射儀(WAXD)與示差熱掃描分析儀(DSC)等探討電紡所得纖維內部微結構之變化。
對於高濃度的聚乳酸溶液而言(例如:在本研究中為20 wt%),其溶液黏度的變化與溶液溫度有密切的關係,藉由提高溶液溫度,可以使得溶液黏度大幅度下降,如此可以在電紡過程中製備出較細的纖維,利用高溫電紡所得PDLLA纖維尺寸最低可達330±20 nm。對於那些濃度不夠高的溶液而言,則可透過添加固體顆粒(filler)的方式提高溶液黏度,使得該溶液也可以利用電紡絲製備出奈米纖維。
在第二部分的論文中,我們提出了如何製備出超細奈米纖維的方法,在沒有足夠高濃度的PDLLA溶液中(例如:10, 13, 15 wt%),加入1 wt%奈米碳球(CNCs)後,因同時提高溶液的黏度與導電度,使得原本無法透過電紡絲製備出纖維型態的溶液,也可製備出超細奈米纖維,纖維細度可達90±10 nm。更進一步,我們發現纖維中含有對於可導電性顆粒的研究並不多,對於纖維膜導電纖維模式的探討也很少,因此在最後一部分的論文將針對奈米纖維中含有導電碳材(CNCs)的導電行為進行探討。
Abstract
Using dimethylformamide as the solvent, electrospinning of PDLLA (D-lactide content: 10%) solutions with various concentrations was performed by means of a heating jacket for controlling the solution temperature ranging from 25 to 104oC. In addition, an IR emitter was used to control the surrounding temperature at ~110oC. The effects of solution properties and processing variables on the morphologies of the cone/jet/fiber were investigated, and the internal structure of the electrospun fibers was characterized using polarized FTIR, WAXD and DSC. A detailed study, starting with the properties of electrospinning solutions to the internal structure of the electrospun fibers, is presented.
For a given solution with a sufficiently high concentration, the solution viscosity can be adjusted to a different level by tuning the operating temperature. The solution viscosity was significantly reduced at elevated temperatures, thereby giving rise to a reduction in electrospun fiber diameter. The fiber diameter was dramatically decreased to 330 ± 20 nm for the solution electrospun at elevated temperatures. For a solution with an insufficient entanglement density, it can be enhanced with the addition of fillers.
In the last part of the dissertation, we propose another method for preparing ultrafine electrospun fibers. The addition of insoluble filler using carbon nanocapsules (CNCs) is proposed to enhance the development of the entangled network structure in a prepared semi-dilute solution. As CNC fillers were added into the 10, 13, and 15 wt% PDLLA solutions, the number of beaded fibers was decreased after electrospinning. Above 1 wt% of CNC was added into the prepared solution, the formation of beaded fibers was eliminated, while solution viscosity and conductivity were dramatically enhanced. Therefore, electrospun fibers with relatively smooth fiber shape were obtained, and fiber diameter could be further reduced to 90 ±10 nm.
Moreover, this work was also motivated by the lack of reported studies on the percolation conduction behavior of deformable fibrous mats containing nanosize conducting particles, such as CNCs. We demonstrate the effect of filler on the microstructure of as-spun composite fibers. The conduction behavior of a PDLLA/CNC composite fiber mat were also investigated.
Reference
[1] Lim, L.T., Auras, R., Rubino, M. Prog. Polym. Sci. 2008, 33, 820.
[2] Donald, G. J. Polym. Environ. 2002, 9, 63.
[3] Bhattarai, S.R., Bhattarai, N. Viswanathamurthi, P., Yi, H.K., Hwang, P.H., Kim, H.Y. J. Biome. Mater. Res. Part A 2006, 78A, 247.
[4] Tsuji, H., Nakano, M., Hashimoto, M., Takashima, K., Katsura, S., Mizuno, A. Biomacromolecules 2006, 7, 3316.
[5] Badami, A.S., Kreke, M.R., Thompson, M.S., Riffle, J.S., Goldstein, A.S. Biomaterials 2006, 27, 596.
[6] Kim, K., Luu, Y.K., Chang, C., Fang, D., Hsiao, B.S., Chu, B., Hadjiargyrou, M. J. Contr. Rel. 2004, 98, 47.
[7] You, Y., Min, B.M., Lee, S.J., Lee, T.S. , Park, W.H. J. Appl. Polym. Sci. 2005, 95, 193.
[8] Bognitzki, M., Frese, T., Steinhart, M., Greiner, A., Wendorff, J.H., Schaper, A. , Hellwig, M. Polym. Eng. & Sci. 2001, 41, 982.
[9] Xu, X., Yang, L., Xu, X., Wanga, X., Chen, X., Liang, O., Zeng, J., Jing, X. J. Control. Rel. 2005, 108, 33.
[10] Cui, W. Li, X., Zhu, X., Yu, G., Zhou, S. , Weng, J. Biomacromolecules 2006, 7, 1623.
[11] Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.S., Hsiao, B.S., Chu, B., Hadjiargyrou, M. Biomaterials 2003, 24, 4977.
[12] Agarwal, S., Wendorff, J.H., Greiner, A. Polymer 2008, 49, 5603.
[13] Srinivasan, G., Reneker, D.H. Polym. Int. 1995, 36, 195.
[14] Doshi, J., Reneker, D.H. J. Electrost. 1995, 35, 151.
[15] Fong, H., Reneker, D.H., J. Polym. Sci. Part B: Polym. Phys 1999, 37, 3488.
[16] Reneker, D.H., Chun, I. Nanotechnology 1996, 7, 216.
[17] Li, D., Xia, Y. Adv. Mater. 2004, 16, 1151.
[18] Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S. Compos. Sci. Technol. 2003, 63, 2223.
[19] Fong, H., Chun, I., Reneker, D.H. Polymer 1999, 40, 4585.
[20] Yang, F., Murugan, R., Wang, S., Ramakrishna, S. Biomaterials 2005 26, 2603.
[21] Greiner, A., Wendorff, J.H. Angew. Chem. Int. Ed. 2007, 46, 5670.
[22] Ramakrishna, S., Kazutoshi. F., Teo, W.E., Lim, T.C., Ma, Z. An introduction to nanofibers. Singapore: World Scientific Co., Pte. Ltd; 2005.
[23] Reneker, D.H., Fong, H. Polymeric nanofibers. In: ACS Symposium Series 918. Washington, DC: American Chemical Society; 2006.
[24] Reneker, D.H., Yarin, A.L., Zussman, E., Xu, H. In: Aref H, Van Der Giessen E, editors. Advances in applied mechanics, vol. 41. London: Elsevier/Academic Press; 2007. 43-195.
[25] Yördem, O.S., Papila, M., Menceloğlu, Y.Z. Materials & Design 2008, 29, 34.
[26] Lee, K.H., Kim, H.Y., Bang, H.J., Jung, Y.H., Lee, S.G. Polymer 2003, 44, 4029.
[27] Beachley, V., Wen, X. Mater. Sci. Eng. C 2009, 29, 663.
[28] Jacobs, V., Anandjiwala, R.D., Maaza, M. J. Appl. Polym. Sci. 2010, 115, 3130.
[29] Theron, S.A., Zussmana, E., Yarin A.L. Polymer 2004, 45, 2017.
[30] Uyar, T., Besenbacher, F. Polymer 2008, 49, 5336.
[31] Lyons, J., Li, C., Ko, F. Polymer 2004, 45, 7597.
[32] Zhou, H., Green, T.B., Joo, Y.L. Polymer 2006, 47, 7497.
[33] McCann, J.T., Marquez, M., Xia, Y. Nano. Lett. 2006, 6, 2868.
[34] Dalton, P.D., Klinkhammer, K., Salber, J., Klee, D., Möller, M. Biomacromolecules 2006, 7, 686.
[35] Dalton, P.D., Grafahrend, D., Klinkhammer, K., Klee, D., Möller, M. Polymer 2007, 48, 6823.
[36] Lee, S., Obendorf S.K. J. Appl. Polym. Sci. 2006, 102, 3430.
[37] Ogata, N., Shimada, N., Yamaguchi, S., Koji Nakane, K., Ogihara, T. J. Appl. Polym. Sci. 2007, 105, 1127.
[38] Ogata, N. Lu, G., Iwata, T., Yamaguchi, S., Nakane, K., Ogihara, T. J. Appl. Polym. Sci. 2007, 104, 1368.
[39] Deng, R., Liu, Y., Ding, Y., Xie, P., Luo, L., Yang W. J. Appl. Polym. Sci. 2009, 114, 166.
[40] Zhmayev, E., Cho, D., Joo, Y.L. Polymer 2010, 51, 4140.
[41] McKee, M.G., Wilkes, G.L., Colby, R.H., Long, T.E. Macromolecules 2004, 37, 1760.
[42] Shenoy, S.L., Bates, W.D., Frisch, H.L., Wnek, G..E. Polymer 2005, 46, 3372.
[43] Wang, C., Hsu, C.H., Lin, J.H. Macromolecules 2006, 39, 7662.
[44] Ohkama, K., Minato, K.I., Kumagai, G., Hayashi, S., Yamamoto, H. Biomacromolecules 2006, 7, 3291.
[45] Gupta, P., Elkins, C., Long, T.E., Wilkes, G.L. Polymer 2005, 46, 4799.
[46] Li, L., Hsieh, Y.L. Polymer 2005, 46, 5133.
[47] Demir, M.M., Yilgor, I., Yilgor, E. Erman, B. Polymer 2002, 43, 3303.
[48] Deitzel, J.M., Kleinmeyer, J., Harris, D., Tan, N.C.B Polymer 2001, 42, 261.
[49] Son, W.K., Youk, J.H., Lee, T.S., Park, W.H. Polymer 2004, 45, 2959.
[50] Fan, L., Nishikawa, T., Shimizu, W., Sato, T., Usami, H., Amiya, S., Ni, Q.Q., Murakami, Y. Textile Research Journal 2012 doi:0040517512436833
[51] Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., Langer, R. Biomaterials 1996, 17, 1417.
[52] Tsuji, H., Ikada, Y. Macromol Chem Phys 1996, 197, 3483.
[53] Kumbar, S.G., Nukavarapu, S.P., James, R., Nair, L.S., Laurenin, C.T. Biomaterials 2008, 29, 4100.
[54] Tan, S.H., Inai, R., Kotaki, M., Ramakrishna, S. Polymer 2005, 46, 6128.
[55] Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B. Polymer 2002, 43, 4403.
[56] Inai, R., Kotaki, M., Ramakrishna, S. Nanotechnology 2005, 16, 208.
[57] Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A., Wendorff, J.H. Adv. Mater. 2001, 13, 70.
[58] Ishii, D., Ying, T.H., Mahara, A., Murakami, S., Yamaoka, T., Lee, W., Iwata, T. Biomacromolecules 2009, 10, 237.
[59] Lowery, J.L., Datta, N., Rutledge,G.C. Biomaterials 2010, 31, 491.
[60] Eichhorn, S.J., Sampson, W.W. J. R. Soc. Interface 2010, 45, 641.
[61] Ogata, N., Yamaguchi, S., Shimada, N., Lu, G., Iwata, T., Nakane, K., Ogihara, T. J. Appl. Polym. Sci. 2007, 104, 1640.
[62] Bhattarai, S.R., Bhattarai, N., Yi, H.K., Hwang, P.H., Cha, D.I., Kim, H.Y. Biomaterials 2004, 25, 2595.
[63] Huang, C., Chen, S., Lai, C., Reneker, D.H., Qiu, H., Ye, Y., Hou, H. Nanotechnology 2006, 17, 1558.
[64] Lin, K., Chua, K.N., Christopherson, G.T., Lim, S., Mao, H.Q. Polymer 2007, 48, 6384.
[65] Liu, Y., He, J.H., Yu, J.Y., Zeng, H.M. Polym. Int. 2008, 57, 632.
[66] Givens, S.R., Gardner, K.H., Rabolt, J.F., Chase, D.B. Macromolecules 2007, 40, 608.
[67] Wang, C., Chien, H.S., Hsu, C.H., Wang, Y.C., Wang, C.T., Lu, H.A. Macromolecules 2007, 40, 7973.
[68] Wang, C., Chien, H.S., Yan, K.W., Hung, C.L., Hung, K.L., Tsai, S.J., Jhang, H.J. Polymer 2009, 50, 6100.
[69] Drew, C., Wang, X., Samuelson, L.A., Kumar, J. Macromol. Sci. Part A 2003, 40, 1415.
[70] Menini, R., Farzaneh, M. Polym. Int. 2008, 57, 77.
[71] Iijima, S. Nature 1991, 354, 56.
[72] Iijima, S., Ichihashi, T. Nature 1993, 363, 603.
[73] Xu, B., Guo, J., Wang, X., Liu, X., Ichinose, H. Carbon 2006, 44, 2631.
[74] Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C. Prog. Polym. Sci. 2010, 35, 357.
[75] Dror, Y., Salalha, W., Pyckhout-H, W., Yarin, A.L., Zussman, E., Cohen, Y. Progr. Colloid. Polym. Sci. 2005, 130, 64.
[76] Moniruzzaman, M., Winey, K.I. Macromolecules 2006, 39, 5194.
[77] Mazinani, S., Ajji, A., Dubois, C. Polymer 2009, 50, 3329.
[78] McCullen, S.D., Stevens, D.R., Robert, W.A., Ojha, S.S., Clarke, L.I., Gorga, R.E. Macromolecules 2007, 40, 997.
[79] Ojha, S.S., Stevens, D.R., Stano, K., Hoffman, T., Clarke, L.I., Gorga, R.E. Macromolecules 2008, 41, 2509.
[80] McCullen, S.D., Stano, K.L., Stevens, D.R., Roberts, W.A., Monteiro-R, N.A., Clarke, L.I., Gorga, R.E. J. Appl. Polym. Sci. 2007, 105, 1668.
[81] Ji, J., Sui, G., Yu, Y., Liu, Y., Lin, Y., Du, Z., Ryu, S., Yang, X. J. Phys. Chem. C 2009, 113, 4779.
[82] Chien, H.S., Wang, C. J Appl Polym Sci 2012 doi:10.1002/app.38116
[83] Dong, H., Strawhecker, K.E., Snyder, J.S., Orlicki, J.A., Reiner, R.S., Rudie, A.W. Carbohydrate Polymers 2012, 87, 2488.
[84] Sui, X.M., Giordani, S., Prato, M., Wagner, H.D. Appl. Phys. Lett. 2009, 95, 233113.
[85] Liao, G.Y., Zhou, X.P., Chen, L., Zeng, X.Y., Xie, X.L., Mai, Y.W. Compos. Sci. Technol. 2012, 72, 248.
[86] Hwang, J., Muth, J., Ghosh, T. J. Appl. Polym. Sci. 2007, 104, 2410.
[87] Legrand, P., Lesieur, S., Bochot, A., Gref, R., Raatjes, W., Barratt, G., Vauthier, C. Int. J. Pharm. 2007, 344, 33.
[88] Wen, Y.H., Lin, H.C., Li, C.H., Hua, C.C. Polymer 2004, 45, 8551.
[89] Wang, C., Hsu, C.H., Hwang, I.H. Polymer 2008, 49, 4188.
[90] Zong, X., Ran, S., Kim, K.S., Fang, D., Hsiao, B.S., Chu, B. Biomacromolecules 2003, 4, 416.
[91] Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P. Phys. Fluids. 2001, 13, 2221.
[92] Meaurio, E., Zuza, E., López-Rodriguez N., Sarasua, J.R. J. Phys. Chem. B 2006, 110, 5790.
[93] Park, J.W., Tanaka, T., Doi, Y., Iwata, T. Macromol. Biosci. 2005, 5, 840.
[94] Takasaki, M., Ito, H., Kikutani, T. J Macromol. Sci. Phys. B 2003, 42, 57.
[95] Hoogsteen, W., Postema, A.R., Pennings, A.J., ten Brinke, G., Zugenmaier, P. Macromolecules 1990, 23, 634.
[96] Aou, K., Kang, S., Hsu, S.L. Macromolecules 2005, 38, 7730.
[97] Megelski, S., Stephens, J.S., Tassi, N.G., Chase, D.B., Rabolt, J.F. Macromolecules 2002, 35, 8456.
[98] Dayal, P., Liu, J., Kumar, S., Kyu, T. Macromolecules 2007, 40, 7689.
[99] Dersch, R., Liu, T., Schaper, A.K., Greiner, A., Wendorff ,J.H. J. Polym. Sci. Polym. Chem. 2003, 41, 545.
[100] You, Y., Lee, S.W., Lee, S.J, Park, W.H. Mater. Lett. 2006, 60, 1331.
[101] Tan, E.P.S., Lim, C.T. Nanotechnology 2006, 17, 2649.
[102] Pötschke, P., Abdel-G, M., Alig, I., Dudkin, S., Lellinger, D. Polymer 2004, 45, 8863.
[103] Anderson, K.S., Hillmyer, M.A. Macromolecules 2004, 37, 1857.
[104] Rayment, P., Ross-M, S.B., Ellis, P.R. Carbohydr. Polym. 2000, 43, 1.
[105] Wang, C., Cheng, Y.W., Hsu, C.H., Chien, H.S., Tsou, S.Y. J. Polym. Res. 2011, 18, 111.
[106] Sung, J.H., Kim, H.S., Jin, H.J., Choi, H.J., Chin, I.J. Macromolecules 2004, 37, 9899.
[107] Seoul, C., Kim, Y.T., Baek, C.K. J. Polym. Sci. Part B 2003, 41, 1572.
[108] Huang, C.L., Wang, C. Euro. Polym. J. 2011, 47, 2087.
[109] Pan, P., Kai, W., Zhu, B., Dong, T., Inoue, Y. Macromolecules 2007, 40, 6898.
[110] Zhang, J., Duan, Y., Sato, H., Tsuji, H., Noda, I., Yan, S., Ozaki, Y. Macromolecules 2005, 38, 8012.
[111] Yu, Z., Chen, D., Tøtdal, B., Zhao, T., Dai, Y., Yuan, W., Holmen, A. Appl. Cata. A 2005, 279, 223.
[112] Hu, X., An, H., Li, Z.M., Geng, Y., Li, L., Yang, C. Macromolecules 2009, 42, 3215.
[113] Norris, I.D., Shaker, M.M., Ko, F.K., MacDiarmid, A.G. Syn. Met. 2000, 114, 109.
[114] Laforgue, A., Robitaille, L. Syn. Met. 2008, 158, 577.
[115] Laforgue A., Robitaille, L. Macromolecules 2010, 43, 4194.
[116] Ounaies, Z., Park, C., Wise, K.E., Siochi, E.J., Harrison, J.S. Compos. Sci. Technol. 2003, 63, 1637.
[117] Kim,H.S., Jin, H.J., Myung, S.J., Kang, M., Chin, I.J. Macromol. Rapid. Commun. 2006, 27, 146.
[118] Kirkpatrick, S. Rev. Mod. Phys. 1973, 45, 574.
[119] Logakis, E., Pandis, Ch., Pissis, P., Pionteck, J., Pötschke, P. Compos. Sci. Technol. 2011, 71, 854.
[120] Heaney, M.B. Phys. Rev. B. 1995, 52, 12477.
[121] Batrouni, G.G., Hansen, A., Larson, B. Phys. Rev. E 1996, 53, 2292.
[122] Vionnet-M, S., Grimaldi, C., Maeder, T., Strässler, S., Ryser, P. Phys. Rev. B 2005, 71, 064201 1-12.
[123] Rubin, Z., Sunshine, S.A., Heaney, M.B., Bloom, I., Balberg, I. Phys. Rev. B 1999, 59, 12196.
[124] Dalmas, F., Dendievel, R., Chazeau, L., Cavaillé, J.Y., Gauthier, C. Acta. Mater. 2006, 54, 2923.
[125] McLachlan, D.S., Heiss, W.D., Chiteme, C., Wu, J. Phys. Rev. B 1998, 58, 13558.
[126] Lu, W., Lin, H., Chen, G. J. Polym. Sci. Part B 2006, 44, 1846.
[127] Huang, C.L., Wang, C. Carbon 2011, 49, 2334.