簡易檢索 / 詳目顯示

研究生: 陳亭宇
Chen, Ting-Yu
論文名稱: 清醒到睏睡的腦電波與眼電波分析
Analysis of EEG and EOG Changes from Alertness to Sleepiness
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 33
中文關鍵詞: 清醒睏睡睏睡偵測腦電波眼電波前額
外文關鍵詞: Alertness, sleepiness, sleepiness detection, EEG, EOG, forehead
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是為了開發基於前額腦電訊號睏睡偵測系統所做的研究,而在這個電極點位置對日常生活的影響比較小。首先我們會觀察受試者從清醒到睏睡、從睏睡到睡著在行為和生理訊號上的變化,從觀察中可以發現在狀態轉換時,行為和生理訊號會有哪些變化。接著在這些變化中從Forehead-EEG擷取明顯且大部分受試者都會出現的現象作為特徵。然而,在觀察這些訊號前必須先確認該訊號的使用性(applicability)和可用性(feasibility)。
    在使用性的部分會先觀察影片和訊號,確認在每個階段,也就是清醒到睏睡和睏睡到閉眼後,前額腦電訊號都可以觀察到受試者的現象;在可用性的部分則是針對閉眼前會出現的眼動訊號和閉眼後到睡眠各個階段的特徵,分別計算他們與影片觀察和腦電訊號的一致性。
    本研究中我們整理了幾個特徵。在清醒到睏睡的部分,可以看到睏睡時,受測者的眨眼會變慢,而且會比較頻繁,有些受試者會出現眨眼眨一半的情況,而這些現象可以在前額腦電訊號中看到。在閉眼後則會在訊號看到眼動慢波的出現,而當受試者進入睡眠階段N2時,會有sleep spindle(12-14 Hz)的波型出現。而在實驗中我們發現,在閉眼後,受試者很快就會睡著進入N1,而N1的時間也不長,因此,N2的偵測可以作為最後的補救機制。以上特徵可作為未來開發睏睡偵測系統的使用。

    This study is the first step towards a sleepiness detecting system based on Forehead-EEG, which disturbs the user much less in daily life. First, we continuously observe the behaviors and signals from alertness to sleepiness and asleep. Then we find some different patterns in the transition of each state. After that, we would grab some patterns could be used in the Forehead-EEG signal. However, the first thing we should confirm is the applicability and feasibility of the Forehead-EEG signal.
    To confirm the applicability of the signal, we observe both the video recorded by the camera and the physiological signals. Verifying the feasibility of the signal, we compare the phenomenon observed in video and signal. Besides, we also compare the patterns between Forehead-EEG signal and EEG signal, as ground truth in each stage after eye-closure.
    In the study, we conclude some patterns that could be used in the detecting system based on Forehead-EEG. First, blink patterns such as blinking duration and blinking rate changes from alertness to sleepiness. Second, the slow eye movement is observed after closing eyes. The last one, sleep spindle (12-14 Hz) in stage N2 can be the last-ditch attempt to rouse the user, while close wake and stage N1 are short that we have found as scoring stages in the study.

    摘 要 I ABSTRACT II 誌 謝 III Content IV List of Figures V List of Tables VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 Chapter 2 Materials and Methods 3 2.1 Materials 3 2.2 Recording 4 2.3 Experiment design 5 2.4 Processing 6 2.4.1 Pre-processing 6 2.4.2 Status labeling 6 2.4.3 Behavior labeling 6 2.4.4 Sleep scoring 6 2.5 Analysis 7 Chapter 3 Result 8 3.1 Phenomenon from alertness to sleepiness and asleep 8 3.1.1 Patterns in each state 13 3.2 Phenomenon in Forehead-EEG 17 3.2.1 Blink pattern 17 3.2.2 Percentage of each sleep stage 21 Chapter 4 Discussion 26 4.1 Incomplete blink 26 4.2 Sleep stage onset time 27 Chapter 5 Conclusions and Future works 31 Reference 32

    Anderson, C., Chang, A.-M., Sullivan, J. P., Ronda, J. M., & Czeisler, C. A. (2013). Assessment of drowsiness based on ocular parameters detected by infrared reflectance oculography. Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep Medicine, 9(9), 907.
    Chen, C.-Y. (2012). Effects of daytime Naps on Sleepiness Reduction and performance Enhancement. (Master), National Cheng Kung University, Tainan, Taiwan, ROC.
    Chieh, T. C., Mustafa, M. M., Hussain, A., Hendi, S. F., & Majlis, B. Y. (2005). Development of vehicle driver drowsiness detection system using electrooculogram (EOG). Paper presented at the Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering, 2005. CCSP 2005. 1st International Conference on.
    Cyganek, B. (2016). Real-Time Eye Detection and Tracking in the Near-Infrared Video for Drivers’ Drowsiness Control. Paper presented at the Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015.
    Flores, M. J., Armingol, J. M., & de la Escalera, A. (2011). Driver drowsiness detection system under infrared illumination for an intelligent vehicle. IET intelligent transport systems, 5(4), 241-251.
    Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., . . . Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Components of a New Research Resource for Complex Physiologic Signals, 101(23), e215-e220. doi:10.1161/01.CIR.101.23.e215
    Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. (1973). Quantification of sleepiness: a new approach. Psychophysiology, 10(4), 431-436.
    Hu, S., & Zheng, G. (2009). Driver drowsiness detection with eyelid related parameters by Support Vector Machine. Expert Systems with Applications, 36(4), 7651-7658.
    Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specification, (2007). Westchester American Academy of Sleep Medicine, 17-19.
    Jo, J., Lee, S. J., Jung, H. G., Park, K. R., & Kim, J. (2011). Vision-based method for detecting driver drowsiness and distraction in driver monitoring system. Optical Engineering, 50(12), 127202-127202-127224.
    Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., & Oberye, J. J. (2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering, 47(9), 1185-1194.
    Li, Y.-H. (2013). An EOG-based Automatic Sleep Staging Method. (Master), National Cheng Kung University, Tainan, Taiwan, ROC.
    Liang, S.-F., Kuo, C.-E., Hu, Y.-H., & Cheng, Y.-S. (2012). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1), 169-176.
    Lin, C.-T., Wu, R.-C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., & Jung, T.-P. (2005). EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2726-2738.
    Picot, A., Charbonnier, S., & Caplier, A. (2010). Drowsiness detection based on visual signs: blinking analysis based on high frame rate video. Paper presented at the Instrumentation and Measurement Technology Conference (I2MTC), 2010 IEEE.
    Rechtschaffen, A., Kales, A., University of California, L. A. B. I. S., & Network, N. N. I. (1968). A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects: Brain Information Service/Brain Research Institute, University of California.
    Sallinen, M., Härmä, M., Akila, R., Holm, A., Luukkonen, R., Mikola, H., . . . Virkkala, J. (2004). The effects of sleep debt and monotonous work on sleepiness and performance during a 12‐h dayshift. Journal of Sleep Research, 13(4), 285-294.
    Tabal, K. M. R., Caluyo, F. S., & Ibarra, J. B. G. (2016). Microcontroller-Implemented Artificial Neural Network for Electrooculography-Based Wearable Drowsiness Detection System Advanced Computer and Communication Engineering Technology (pp. 461-472): Springer.
    Tefft, B. C. (2010). Asleep at the wheel: The prevalence and impact of drowsy driving.
    Tefft, B. C. (2016). Acute Sleep Deprivation and Risk of Motor Vehicle Crash Involvement.
    Vuckovic, A., Radivojevic, V., Chen, A. C., & Popovic, D. (2002). Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Medical engineering & physics, 24(5), 349-360.
    Williamson, A., Lombardi, D. A., Folkard, S., Stutts, J., Courtney, T. K., & Connor, J. L. (2011). The link between fatigue and safety. Accident Analysis & Prevention, 43(2), 498-515.
    Zhu, X., Zheng, W.-L., Lu, B.-L., Chen, X., Chen, S., & Wang, C. (2014). EOG-based drowsiness detection using convolutional neural networks. Paper presented at the IJCNN.

    下載圖示 校內:2022-08-24公開
    校外:2022-08-24公開
    QR CODE