| 研究生: |
劉成彬 Liu, Cheng-Pin |
|---|---|
| 論文名稱: |
以厭氧流體化床薄膜生物反應器處理不同有機物濃度廢水之研究 Pilot-scale Study of Anaerobic Fludized-bed Membrane Bioreactor for Treating Different Strength of Wastewater |
| 指導教授: |
黃良銘
Whang, Liang-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 流體化床 、厭氧薄膜生物反應器 、養蝦廢水 、薄膜液晶顯示器製程廢水 、晶圓封測有機廢液 、二甲基亞碸 |
| 外文關鍵詞: | Fluidized bed, anaerobic membrane bioreactor, shrimp wastewater, TFT-LCD wastewater, semiconductor wastewater, DMSO |
| 相關次數: | 點閱:143 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,許多產業之用水需求隨著人口增長及經濟發展而有所增加,且近年來環保教育及水資源回收的概念愈來愈受到重視,因此,產業中產生之廢水若能使用適合之處理技術處理廢水,使其符合放流水水質標準,並提高廢水回收率,循環再利用,對於水資源需求量增加之問題將有很大的助益。本研究將建構厭氧流體化床薄膜生物反應器(anaerobic fluidized bed membrane bioreactor, AFMBR)於生物廢水處理系統,利用其微生物於短水力停留時間(HRT)的操作下較不易被洗出(wash-out),且擁有特別良好的質量傳輸,達成其用以處理低到高之有機物負荷量廢水之效能。此外,也將探討AFMBR處理不同廢水的可行性,並針對操作上可能遇到的問題加以改善及擬定應對策略。
在AFMBR分別針對養蝦廢水、薄膜液晶顯示器(TFT-LCD)製程廢水沉澱後之上層液及晶圓封測有機廢液等三種不同有機物濃度之廢水進行處理前, 進行了活性碳吸附測試,其結果以Freundlich及Langmuir兩種等溫吸附線評估每克活性碳最大之有機物吸附量,最後結果顯示:在養蝦廢水處理中添加GAC量之吸附總有機碳(TOC)時,會於5天內吸附飽和,因此,反應器操作5天後,TOC之去除則是主要由生物降解而來;同理,針對稀釋後之晶圓封測有機廢液進行同樣之吸附實驗,得出以GAC吸附此廢液中之有機物時,最終需30天達吸附飽和,因此在反應器操作30天後,晶圓封測有機廢液中有機物質之去除主要由生物降解而來。
首先,AFMBR處理養蝦廢水時,處理後之白蝦養殖水TOC約為1 mg C/L,TOC之去除率最高約可達91%,有效的達到除碳之目標。此外,由於蝦池持續曝氣產生之高溶氧或反應器有機物負荷量低,使得微生物耗氧之速率較慢,進而導致AFMBR應用於養蝦廢水處理時,無法達到預期之厭氧條件。經由批次實驗則發現經過AFMBR以養蝦廢水馴養後且附著於GAC上之微生物可以將養蝦廢水中之硝酸鹽氮些微降解,並伴隨著廢水中TOC之去除。且若以實廠MBR汙泥當作植種源時,有更明顯之同樣現象,由此推測AFMBR處理養蝦廢水中之TOC之機制為缺氧異營性脫硝作用。
第二,AFMBR處理TFT-LCD廢水時,經過約四個月之連續式操作,廢水之COD去除率及TOC去除率分別約為73%及79%,其中,總COD去除率則可高達92%;在此廢水中皆可明顯於測得高強度之高分子量(106 Da)物質,主要含有類溶解性微生物副產物、類腐植酸物質及類磺酸物質,並且含有些許之類芳香烴蛋白物質。這些物質經AFMBR處理後可以被有效去除。而在後期之廢水以FEEM分析後,圖譜中顯示四類物質皆有較高之訊號強度,顯示後期之廢水可能與前期水質特性有些許之不同,也反映出進流水之不穩定性。無論是前期或後期之操作,類溶解性微生物副產物會累積於反應器內,但是出流中FEEM之四類物質皆有減少之趨勢,因此推測:在長期操作下,AFMBR槽內活性碳、微生物可以有效去除這四類物質,也顯示此生物反應器具有處理製程廢水於沉澱池之上層液中之膠體性COD之潛力。
最後,在厭氧生物降解批次實驗中,晶圓封測有機廢液中之二甲基亞碸(DMSO)可以明顯被降解,並伴隨著甲烷、DMS及H2S之產生,顯示出廢水經厭氧處理後可以產生生質能之潛勢。此外,在DMSO濃度與厭氧汙泥濃度(S0/X0)兩者關係之實驗中發現,DMSO之比降解速率隨著S0/X0比值增加而增加,顯示此厭氧汙泥未因為DMSO濃度增加而有抑制之現象,也推測汙泥可以適應更高DMSO濃度之條件。而使用此汙泥當作AFMBR處理晶圓封測有機廢液之植種源時,可以發現DMSO完全被降解,COD及TOC也分別有95%及94%之去除率;產生之氣體組成則是35%甲烷、 57%二氧化碳、1%二甲基硫醚(DMS)及7% 硫化氫(H2S)。此外,在AFMBR中之汙泥來源可分為附著於活性碳(GAC)上之微生物及懸浮於液相之汙泥兩部分,兩者對於DMSO降解之貢獻分別約占43%及57%。而甲烷菌菌相分析部分則顯示: Methanomethylovorans,此類甲烷菌群可有效降解DMSO而生成甲烷或其他副產物。
各式結果顯示,AFMBR應用於此高濃度有機廢液處理時,可以達到水回收再利用及能源回收之目標!
Water, one of the nature resources, is essential for human. In Taiwan, because of the steep terrain and uneven rainfall distribution, available water resource is very low. According to water resources agency, there are three main water consumption sources in Taiwan. One is agriculture consumption (71%), another is domestic consumption (20%), and the other is industrial consumption (9%). Therefore, how to treat these three kinds of wastewater to reach the goal of water reuse is big issue needed for consideration.
Recently, anaerobic process has become popular because of lower energy consumption and fewer waste sludge production. One of the treatment process, known as anaerobic fluidized bed membrane bioreactor (AFMBR), is combined anaerobic fluidized bed (AFB) with membrane bioreactor (MBR). Pilot-scale AFMBR has been successfully used to deal with domestic wastewater, but to treat different kinds of wastewater by AFMBR system still needs more research support. The objective of this study is to investigate the feasibility of pilot-scale anaerobic fluidized bed membrane bioreactor (AFMBR) treating low, medium and high strength of wastewater. These three different strengths of wastewater are shrimp wastewater, TFT-LCD wastewater (supernatant of sedimentation tank), and semiconductor wastewater.
GAC adsorption tests are conducted before using AFMBR to treat wastewater. The results show that after 4.92 days of operation of AFMBR to treat shrimp wastewater, TOC adsorption effect will be carried out and biological effect will be dominant in the rest of operation days. Similarly, after 30.62 days of operation of AFMBR to treat semiconductor wastewater, COD, TOC and DMSO adsorption effect will be carried out and biological effect will be dominant in the rest of operation days.
First, when using AFMBR to treat shrimp wastewater, TOC in the treated white leg shrimp wastewater is about 1 mg C/L, and TOC removal is about 91%. This indicates that the goal of carbon removal in shrimp wastewater by AFMBR is achieved effectively. Additionally, after conducting the denitrification batch experiment, the heterotrophic denitrification can be the mechanism of TOC degradation in shrimp wastewater treatment.
Second, using AFMBR to treat TFT-LCD wastewater, COD removal, total COD removal, and TOC removal are 73%, 92%, and 89%, respectively. In addition, this wastewater contains high molecular weight (about 106 Da) soluble substances, which can be called extracellular polymer or colloidal COD. It also contains soluble microbial by-products-like substances, humic acid-like substances, sulfonic acid-like substances, and little aromatic hydrocarbon protein-like substances. These four types of substances were found in the influent, and there is the decrease of intensity of four types in the reactor and the effluent. Therefore, it is inferred that GAC, microorganisms or membranes in the reactor have the potential to remove these four types of substances.
Third, in the batch experiments of semiconductor wastewater treatment, the sludge from full scale UASB has the potential to degrade DMSO in semiconductor wastewater to produce methane, DMS, and H2S. Additionally, the higher S0/X0 ratio is, the higher specific DMSO degradation rate is. Thus, there is an evidence that there is no inhibition of DMSO degradation by the sludge from full scale UASB. Moreover, when using AFMBR to treat semiconductor wastewater, DMSO removal is 100% in three periods of AFMBR operation. The COD removal and TOC removal can be 95% and 94%, respectively. Finally, there are about 35% of CH4, 57% of CO2, 1% of DMS, and 7% of H2S contained in gas composition of the third period. Furthermore, the mechanism of DMSO degradation in AFMBR is that DMSO are degraded first into DMS, further to MS and finally to H2S. The contribution of GAC and sludge in DMSO removal are 43% and 57%, respectively. This reveals that both of two inoculums almost have the same contribution to degrade DMSO in semiconductor wastewater by using AFMBR. However, the microorganisms attached on GAC produce more methane in AFMBR for the purpose of methane production. And Methanomethylovorans species are the important species to degrade DMSO not only to produce methane, but also to form its by-products, such as DMS, MS, and H2S in this AFMBR system.
At last, it can be found that using AFMBR to treat semiconductor wastewater has potential to not only get good quality of effluent for water reuse, but to produce methane for energy recovery.
Al-Amri, A., Salim, M.R., Aris, A. The effect of different temperatures and fluxes on the performance of membrane bioreactor treating synthetic-municipal wastewater. Desalination, 259(1), 111-119. 2010.
Bae, J., Shin, C., Lee, E., Kim, J., McCarty, P.L. Anaerobic treatment of low-strength wastewater: A comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresource Technology, 165, 75-80. 2014.
Baek, S.H., Pagilla, K.R., Kim, H.-J. Lab-scale study of an anaerobic membrane bioreactor (AnMBR) for dilute municipal wastewater treatment. Biotechnology and Bioprocess Engineering, 15(4), 704-708. 2010.
Blanco, V.D., Encina, P.A.G., Fdzpolanco, F. Effects of Biofilm Growth, Gas and Liquid Velocities on the Expansion of an Anaerobic Fluidized-Bed Reactor (Afbr). Water Research, 29(7), 1649-1654. 1995.
Boopathy, R. Biological treatment of shrimp production wastewater. Journal of industrial microbiology & biotechnology, 36(7), 989-992. 2009.
Boopathy, R., Kern, C., Corbin, A. Use of Bacillus consortium in waste digestion and pathogen control in shrimp aquaculture. International Biodeterioration & Biodegradation, 102, 159-164. 2015.
Buswell, A.M., Sollo, F.W., Jr. The mechanism of the methane fermentation. J Am Chem Soc, 70(5), 1778-80. 1948.
Cancino-Madariaga, B., Hurtado, C.F., Ruby, R. Effect of pressure and pH in ammonium retention for nanofiltration and reverse osmosis membranes to be used in recirculation aquaculture systems (RAS). Aquacultural engineering, 45(3), 103-108. 2011.
Chen, T., Ni, C., Chen, J. Nitrification–denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. Journal of Environmental Science and Health, Part A, 38(10), 2157-2167. 2003a.
Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K. Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology, 37(24), 5701-5710. 2003b.
Cho, K.-S., Zhang, L., Hirai, M., Shoda, M. Removal characteristics of hydrogen sulphide and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. Journal of fermentation and bioengineering, 71(1), 44-49. 1991.
De Bont, J., Van Dijken, J., Harder, W. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Journal of general microbiology, 127(2), 315-323. 1981.
Domínguez Chabaliná, L., Baeza Ruiz, J., Rodríguez Pastor, M., Prats Rico, D. Influence of EPS and MLSS concentrations on mixed liquor physical parameters of two membrane bioreactors. Desalination and water treatment, 46(1-3), 46-59. 2012.
Drews, A. Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. Journal of membrane science, 363(1), 1-28. 2010.
Duan, L., Song, Y., Yu, H., Xia, S., Hermanowicz, S.W. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor. Bioresource technology, 163, 395-398. 2014.
Dutta, K., Lee, M.-Y., Lai, W.W.-P., Lee, C.H., Lin, A.Y.-C., Lin, C.-F., Lin, J.-G. Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource Technology, 165, 42-49. 2014.
Díaz, V., Ibáñez, R., Gómez, P., Urtiaga, A., Ortiz, I. Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. Water research, 45(1), 125-134. 2011.
Federation, W.E., Association, A.P.H. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. 2005.
Gao, D.-W., Zhang, T., Tang, C.-Y.Y., Wu, W.-M., Wong, C.-Y., Lee, Y.H., Yeh, D.H., Criddle, C.S. Membrane fouling in an anaerobic membrane bioreactor: differences in relative abundance of bacterial species in the membrane foulant layer and in suspension. Journal of Membrane Science, 364(1), 331-338. 2010.
Gemende, B., Gerbeth, A., Pausch, N., von Bresinsky, A. Tests for the application of membrane technology in a new method for intensive aquaculture. Desalination, 224(1), 57-63. 2008.
He, Y., Xu, P., Li, C., Zhang, B. High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Research, 39(17), 4110-4118. 2005.
Heijnen, J.J., Mulder, A., Enger, W., Hoeks, F. Review on the application of anaerobic fluidized bed reactors in waste-water treatment. The Chemical Engineering Journal, 41(3), B37-B50. 1989.
Higgins, M.J., Chen, Y.-C., Yarosz, D.P., Murthy, S.N., Maas, N.A., Glindemann, D., Novak, J.T. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors. Water Environment Research, 243-252. 2006a.
Higgins, M.J., Chen, Y.-C., Yarosz, D.P., Murthy, S.N., Maas, N.A., Glindemann, D., Novak, J.T. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors. Water Environment Research, 78(3), 243-252. 2006b.
Huang, Z., Ong, S.L., Ng, H.Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 45(2), 705-713. 2011.
Iversen, V., Koseoglu, H., Yigit, N.O., Drews, A., Kitis, M., Lesjean, B., Kraume, M. Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs. Water research, 43(3), 822-830. 2009.
Iza, J. Fluidized Bed Reactors for Anaerobic Wastewater Treatment. Water science and Technology, 24(8), 109-132. 1991.
Jeong, E., Kim, H.-W., Nam, J.-Y., Shin, H.-S. Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor. Bioresource technology, 101(1), S7-S12. 2010.
Kern, C., Boopathy, R. Use of sequencing batch reactor in the treatment of shrimp aquaculture wastewater. Journal of Water Sustainability, 2(4), 221-232. 2012.
Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L., Bae, J. Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology, 45(2), 576-581. 2011.
Koito, T., Tekawa, M., Toyoda, A. A novel treatment technique for DMSO wastewater. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 3-8. 1998.
Le-Clech, P., Chen, V., Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1–2), 17-53. 2006.
Lee, R., McCarty, P.L., Bae, J., Kim, J. Anaerobic fluidized membrane bioreactor polishing of baffled reactor effluent during treatment of dilute wastewater. Journal of Chemical Technology & Biotechnology, 90(3), 391-397. 2015.
Lesjean, B., Rosenberger, S., Laabs, C., Jekel, M., Gnirss, R., Amy, G. Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment. Water science and technology, 51(6-7), 1-8. 2005.
Liao, B., Allen, D., Droppo, I., Leppard, G., Liss, S. Surface properties of sludge and their role in bioflocculation and settleability. Water research, 35(2), 339-350. 2001.
Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., Zhang, Y. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314, 169-188. 2013.
Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63(11), 4516-4522. 1997.
Lomans, B., Van der Drift, C., Pol, A., Op den Camp, H. Microbial cycling of volatile organic sulfur compounds. Cellular and Molecular Life Sciences, 59(4), 575-588. 2002a.
Lomans, B.P., den Camp, H.J.M.O., Pol, A., van der Drift, C., Vogels, G.D. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and environmental microbiology, 65(5), 2116-2121. 1999a.
Lomans, B.P., den Camp, H.J.M.O., Pol, A., Vogels, G.D. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and environmental microbiology, 65(2), 438-443. 1999b.
Lomans, B.P., Van der Drift, C., Pol, A., Den Camp, H.J.M.O. Microbial cycling of volatile organic sulfur compounds. Cellular and Molecular Life Sciences CMLS, 59(4), 575-588. 2002b.
Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.H., Wagner, M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68(10), 5064-5081. 2002.
Martinez-Sosa, D., Helmreich, B., Netter, T., Paris, S., Bischof, F., Horn, H. Pilot-scale anaerobic submerged membrane bioreactor (AnSMBR) treating municipal wastewater: the fouling phenomenon and long-term operation. Water Science & Technology, 64(9), 1804-1811. 2011.
Meng, F., Chae, S.-R., Drews, A., Kraume, M., Shin, H.-S., Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research, 43(6), 1489-1512. 2009.
Muyzer, G., De Waal, E.C., Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700. 1993.
Park, S.-J., Yoon, T.-I., Bae, J.-H., Seo, H.-J., Park, H.-J. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 36(6), 579-589. 2001.
Pedersen, L.-F., Pedersen, P.B. Hydrogen peroxide application to a commercial recirculating aquaculture system. Aquacultural Engineering, 46, 40-46. 2012.
Ramesh, A., Lee, D.-J., Hong, S. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied microbiology and biotechnology, 73(1), 219-225. 2006.
Rezania, B., Oleszkiewicz, J., Cicek, N. Hydrogen-driven denitrification of wastewater in an anaerobic submerged membrane bioreactor: potential for water reuse. Water science and technology, 54(11-12), 207-214. 2006.
Roy, D., Hassan, K., Boopathy, R. Effect of carbon to nitrogen (C: N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. Journal of industrial microbiology & biotechnology, 37(10), 1105-1110. 2010.
Saddoud, A., Sayadi, S. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment. Journal of hazardous materials, 149(3), 700-706. 2007.
Sanz, I., Fdzpolanco, F. Anaerobic Treatment of Municipal Sewage in Uasb and Afbr Reactors. Environmental Technology Letters, 10(5), 453-462. 1989.
Shin, C., McCarty, P.L., Kim, J., Bae, J. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95-103. 2014.
Steinberg, L.M., Regan, J.M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology, 74(21), 6663-6671. 2008.
Torres, A., Hemmelmann, A., Vergara, C., Jeison, D. Application of two-phase slug-flow regime to control flux reduction on anaerobic membrane bioreactors treating wastewaters with high suspended solids concentration. Separation and purification technology, 79(1), 20-25. 2011.
Tsai, B.N., Chang, C.H., Lee, D.J. Fractionation of soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Environmental technology, 29(10), 1127-1138. 2008.
Urakami, T., Araki, H., Oyanagi, H., Suzuki, K.-I., Komagata, K. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N, N-dimethylformamide. International journal of systematic bacteriology, 40(3), 287-291. 1990.
Van Zyl, P., Wentzel, M., Ekama, G., Riedel, K. Design and start-up of a high rate anaerobic membrane bioreactor for the treatment of a low pH, high strength, dissolved organic waste water. Water Science and Technology, 57(2), 291-295. 2008.
Wijekoon, K.C., Visvanathan, C., Abeynayaka, A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353-5360. 2011.
Woese, C.R. Bacterial evolution. Microbiological reviews, 51(2), 221. 1987.
Wu, J.J., Muruganandham, M., Chen, S. Degradation of DMSO by ozone-based advanced oxidation processes. Journal of Hazardous Materials, 149(1), 218-225. 2007.
Wu, Y.-J., Whang, L.-M., Chang, M.-Y., Fukushima, T., Lee, Y.-C., Cheng, S.-S., Hsu, S.-F., Chang, C.-H., Shen, W., Yang, C.-Y. Impact of food to microorganism (F/M) ratio and colloidal chemical oxygen demand on nitrification performance of a full-scale membrane bioreactor treating thin film transistor liquid crystal display wastewater. Bioresource technology, 141, 35-40. 2013.
Yoo, R., Kim, J., McCarty, P.L., Bae, J. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresource Technology, 120, 133-139. 2012.
Zhang, L., Hirai, M., Shoda, M. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated from peat biofilter. Journal of fermentation and bioengineering, 72(5), 392-396. 1991.
Zhang, Z.-P., Tay, J.-H., Show, K.-Y., Yan, R., Tee Liang, D., Lee, D.-J., Jiang, W.-J. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. International Journal of Hydrogen Energy, 32(2), 185-191. 2007.
李雅菁,"針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究",國立成功大學環境工程學系碩士論文,2010
林瑩峰、荊樹人、蘇璿裕,"人工溼地管理水產養殖廠排放廢水污染之技術開發",第一屆亞洲濕地大會論文集,2008
宜澤輔,"以厭氧流體化薄膜生物反應器處理煉鋼冷軋廢水之研究",國立成功大學環境工程學系碩士論文,2016
柯清水,"水產養殖的致病根源—亞硝酸鹽",養魚世界,第24頁,1998
洪鈺清,"以分子生物技術評估TFT-LCD廢水中降解TMAH之甲烷菌群變化",國立成功大學環境工程學系碩士論文,2012
張婷婷,"除氮系統中與無氧氨氧化菌共存之微生物組成分析",國立中興大學環境工程學研究所碩士論文,2009
張明玉,"薄膜生物反應器實廠處理光電廢水之評估",國立成功大學環境工程學系碩士論文,2013
陳怡忻,"膠體性COD對MBR實廠處理光電廢水硝化效能影響之研究",國立成功大學環境工程學系碩士論文,2014
楊英賢,"活性碳厭氧流體化床處理環類廢水程序之技術開發",1994
甯凱璘,"以BioWin模擬MBR實廠處理光電廢水及評估膠體性COD對硝化效能影響",國立成功大學環境工程學系碩士論文,2015
雷媛媛,"以厭氧生物系統及好氧薄膜生物反應器處理晶圓封測有機廢液之評估",國立成功大學環境工程學系碩士論文,2016
蔡震州,"污水營養鹽回收進行生態養殖之研究",嘉南藥理科技大學碩士論文,2010