簡易檢索 / 詳目顯示

研究生: 卓書慧
Cho, Shu-Huei
論文名稱: Rab37蛋白透過胞外運輸SFRP1進而抑制肺癌幹細胞特性
Exocytosis of secreted frizzled-related protein 1 by Rab37 in suppression of lung cancer stemness
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 肺癌Rab37SFRP1Wnt訊息路徑胞釋作用癌幹特性
外文關鍵詞: Lung cancer, Rab37, SFRP1, Wnt signaling, exocytosis, cancer stemness
相關次數: 點閱:90下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景介紹: 許多的證據顯示癌症幹細胞 (cancer stem cells) 具有自我再生、藥物抗性和細胞遷移的能力,且Wnt訊號傳遞途徑的過度活化,容易促使癌症幹細胞的產生,導致不同癌症的藥物治療抗性及遠端轉移,但SFRPs (secreted frizzled related proteins) 胞外蛋白能拮抗Wnt訊號傳遞途徑。先前本實驗室的研究已證實新穎的Rab37 small GTPase透過胞釋作用 (excytosis) 參與調控貨物蛋白 (cargo) 的分泌,進而抑制肺癌細胞的轉移。我們利用蛋白質體學分析結果得知SFRP1可能為Rab37的囊泡運輸 (vesicle trafficking) 貨物蛋白;然而,Rab37蛋白在調控癌症幹性所扮演之角色以及是否介導SFRP1分泌目前仍未知。
    目的: 本研究以肺癌為模式探討Rab37是否介導SFRP1蛋白分泌而抑制癌症幹性的相關分子機制。
    實驗結果: 我們在肺癌細胞中以shRNA方式將Rab37蛋白表達抑制或於細胞的培養液 (conditioned medium) 加入SFRP1抑制劑後,透過癌細胞球團 (tumor sphere) 分析及定量聚合酶連鎖反應的結果顯示肺癌細胞球團的生成、癌幹特性的轉錄因子及Wnt下游相關基因的表現量皆有增加的趨勢;在癌細胞內穩定表達Rab37蛋白或經過添加SFRP1重組蛋白的處理後,則會抑制肺癌細胞幹性。在免疫缺陷的裸鼠體內植入50顆Rab37蛋白低表達的肺癌細胞即可產生腫瘤,顯示Rab37蛋白低表達的肺癌細胞具癌幹特性;特別的是,這種裸鼠癌幹特性可以因為加入SFRP1重組蛋白而抑制腫瘤生長。我們透過收集Rab37野生 (wild-type)、活化態 (GTP active mutant)、非活化態 (GDP inactive mutant) 穩定表達細胞的培養液及離析胞內囊泡,以及免疫螢光染色與全反射倒立螢光顯像,進一步確認Rab37以GTPase活性模式調控SFRP1蛋白的胞外運輸。最後在我們的臨床肺癌病人檢體中發現Rab37低表達伴隨著SFRP1蛋白的減少及癌幹指標Oct4高表現,這類病人的存活率及無病變存活期有明顯降低的現象。
    實驗結論: 本研究提供肺癌細胞、動物及病人臨床的結果證實Rab37透過胞吐作用將SFRP1蛋白釋放至胞外,進而抑制Wnt訊號傳遞途徑及癌幹特性。未來可以針對此 Rab37-SFRP1-Wnt 訊息路徑找尋有潛力的肺癌治療策略。

    Background: Emerging evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation, tumorigenicity, and therapeutic resistance. In addition, activated Wnt signaling pathway occurs frequently in the CSCs of many cancer types. We previously characterized that Rab37 small GTPase mediates exocytosis of tissue inhibitor of metalloproteinase 1 leading to suppression of tumor metastasis. Notably, secreted frizzled-related protein 1 (SFRP1) was identified as a putative cargo by our Rab37-mediated secretomic analysis. SFRP1 is known to be an extracellular antagonist of the Wnt signaling pathway, which is critical for cancer stemness.
    Purpose: We investigated whether Rab37-mediated SFRP1 secretion suppressed lung CSC properties and whether activation of Rab37-SFRP axis exerted therapeutic value.
    Results: We showed that knockdown of Rab37 at the cell-based assays or addition of SFRP1 inhibitor in conditioned medium (CM) increased self-renewal capacity and up-regulated the expression of stemness-related genes and downstream target genes of Wnt signal pathway in lung cancer cells. Importantly, overexpression of cytosolic Rab37 or treatment of soluble recombinant SFRP1 in CM rescued the increased stemness properties. Moreover, tumor initiation ability was promoted in the xenotransplantation animal model with Rab37 knockdown lung cancer cells, while such a tumor initiation ability-mediated by Rab37 knockdown was attenuated by addition of SFRP1 recombinant protein. Notably, Rab37-mediated anti-stemness ability was confirmed in cells overexpressing wild-type or Q89L (active mutant)-Rab37, while T43N (inactive mutant)-Rab37 expressing cells reduced such an anti-stemness ability. In addition, the collected CM and isolated vesicles from lung cancer cell lines manipulated for Rab37 showed the exocytosis of SFRP1 via Rab37 in a GTPase-dependent manner, which was further confirmed by immunofluorescence images and total internal reflection fluorescence images. Clinically, concordantly low expression of Rab37 and SFRP1 in tumor specimens correlated with high expression of Oct4 stemness marker and the worse clinical outcome of lung cancer patients.
    Conclusion: This study provides compelling evidence that Rab37-mediated SFRP1 secretion inhibits Wnt signaling pathway and CSCs properties. Targeting this Rab37-SFRP1-Wnt pathway possesses therapeutic value to treat lung cancer.

    Introduction 1 I. Lung cancer (A). Epidemiology of lung cancer 1 (B). Therapeutic strategies in lung cancer 1 II. Cancer stem cells (CSCs) (A). The characteristics of CSCs 2 (B). CSCs in cancer 3 (C). CSCs signaling pathways 3 (D). Secreted frizzled-related protein 1 (SFRP1), a Wnt pathway antagonist 4 III. Rab GTPases in cancer cells (A). Rab GTPases in vesicles trafficking 5 (B). The tumorigenic role of Rab GTPases in cancer 7 (C). Rab37, a novel metastasis suppressor 8 Study Basis and Specific Aims 9 Materials and Methods 11 I. Cell lines and culture conditions 11 II. Plasmid, RNAi and transfection 11 III. Sphere forming assay 12 IV. RNA extraction and quantitative reverse transcriptase polymerase chain reaction assay 13 V. Conditioned medium preparation 13 VI. Vesicle isolation and immunoprecipitation 13 VII. Western blot analysis 14 VIII. Cycloheximide chase assay 15 IX. Confocal microscopy 15 X. Total internal reflection fluorescence microscopy 15 XI. Recombinant protein and inhibitor treatment 16 XII. Xenograft tumor initiation assay 16 XIII. Immunohistochemistry assay 17 XIV. Statistical analysis 17 Results 19 I. The role of Rab37 in lung cancer stem cells (A). Rab37 overexpression suppressed stemness properties in lung cancer cell 19 (B). Down-regulation of Rab37 enhanced lung cancer stem cell properties in vitro 19 (C). Down-regulation of Rab37 enhanced tumor initiation ability in vivo 20 II. Rab37 regulated secreted frizzled-related protein-1 (SFRP1) trafficking in lung cancer cells (A). Regulation of SFRP1 secretion by small GTPase Rab37 in a nucleotide-dependent manner 21 (B). Real-time visualization of Rab37 on SFRP1 trafficking by total internal reflection fluorescence microscopy 22 III. Rab37 inhibited lung cancer stem cell properties through SFRP1 (A). Rab37 overexpression suppressed Wnt signaling pathway in lung cancer 22 (B). Rab37 suppressed lung cancer stem cell properties through SFRP1 secretion 24 (C). Treatment of SFRP1 recombinant protein rescued the increased stemness properties in Rab37 knockdown cells 24 IV. Clinical impact of coinciding low Rab37, low SFRP1, and high Oct4 expression in lung cancer patients (A). Rab37 protein expression positively correlated with SFRP1 level in lung cancer patients 25 (B). Patients with low Rab37, low SFRP1 and high Oct4 level showed the worst clinical outcome 26 Discussion 28 References 33 Figures 42 Tables 61 Appendix Figures 69  

    Akimoto M., Maruyama R., Takamaru H., Ochiya T., Takenaga K. (2016). Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat Commun. 7:13589.
    Bravo-Cordero J.J., Marrero-Diaz R., Megías D., Genís L., García-Grande A., García M.A., Arroyo A.G., Montoya M.C. (2007). MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 26(6):1499-510.
    Casey T.M., Meade J.L., Hewitt E.W. (2007). Organelle Proteomics. Mol Cell Proteomics. 6:767-80.
    Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., Visvader J., Weissman I.L., Wahl G.M. (2006). Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66(19):9339-44.
    Cruciat C.M, Niehrs C. (2013). Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 5:a015081.
    Eramo A., Lotti F., Sette G., Pilozzi E., Biffoni M., Di Virgilio A., Conticello C., Ruco L., Peschle C., De Maria R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15(3):504-14.
    Fitzgerald M.L. and Reed G.L. (1999). Rab6 is phosphorylated in thrombin-activated platelets by a protein kinase C-dependent mechanism: effects on GTP/GDP binding and cellular distribution. Biochem J. 342(Pt 2): 353-60.
    Fukui T., Kondo M., Ito G., Maeda O., Sato N., Yoshioka H., Yokoi K., Ueda Y., Shimokata K., Sekido Y. (2005). Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene. 24(41):6323-7.
    Hadjimichael C., Chanoumidou K., Papadopoulou N., Arampatzi P., Papamatheakis J., Kretsovali A. (2015). Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells. 7(9):1150-84.
    Hendrix A., Maynard D., Pauwels P., Braems G., Denys H., Van den Broecke R., Lambert J., Van Belle S., Cocquyt V., Gespach C., Bracke M., Seabra M.C., Gahl W.A., De Wever O., Westbroek W. (2010). Effect of the secretory small GTPase Rab27B on breast cancer growth, invasion, and metastasis. J Natl Cancer Inst. 102(12):866-80.
    Hoffman P.C., Mauer A.M., Vokes E.E. (2000). Lung cancer. Lancet. 355:479-85.
    Ihde D.C. (1992). Chemotherapy of lung cancer. N Engl J Med. 327:1434-41.
    Ishikawa E.T., Chang K.H., Nayak R., Olsson H.A., Ficker A.M., Dunn S.K., Madhu M.N., Sengupta A., Whitsett J.A., Grimes H.L., Cancelas J.A. (2013). Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking. Nat Commun. 4:1660.
    Kaur P., Mani S., Cros M.P., Scoazec J.Y., Chemin I., Hainaut P., Herceg Z. (2012). Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. Tumour Biol. 33(2):325-36.
    Karamboulas C., Ailles L. (2013). Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 1830(2):2481-95.
    Koury J., Zhong L., Hao J. (2017). Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. doi: 10.1155/2017/2925869.
    Lavergne E., Hendaoui I., Coulouarn C., Ribault C., Leseur J., Eliat P.A., Mebarki S., Corlu A., Clément B., Musso O. (2011). Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active beta-catenin. Oncogene. 30(4):423-33.
    Leon G., MacDonagh L., Finn S.P., Cuffe S., Barr M.P. (2016). Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther. 158:71-90.
    Leung E.L., Fiscus R.R., Tung J.W., Tin V.P., Cheng L.C., Sihoe A.D., Fink L.M., Ma Y., Wong M.P. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 5(11):e14062.
    Li B., Yao Z., Wan Y., Lin D. (2016). Overexpression of OCT4 is associated with gefitinib resistance in non-small cell lung cancer. Oncotarget. 7(47):77342-7.
    Liu Y., Nakatsukasa K., Kotera M., Kanada A., Nishimura T., Kishi T., Mimura S., Kamura T. (2011). Non-SCF-type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function. Mol Biol Cell. 22, 1575-84.
    Lobo N.A., Shimono Y., Qian D., Clarke M.F. (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol. 23:675-99.
    Luo M.L., Gong C., Chen C.H., Hu H., Huang P., Zheng M., Yao Y., Wei S., Wulf G., Lieberman J., Zhou X.Z., Song E., Lu K.P. (2015). The Rab2A GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 11(1):111-24.
    Luo Y., Ye G.Y., Qin S.L., Mu Y.F., Zhang L., Qi Y., Qiu Y.E., Yu M.H., Zhong M. (2016). High expression of Rab3D predicts poor prognosis and associates with tumor progression in colorectal cancer. Int J Biochem Cell Biol. 75:53-62.
    MacDonald B.T., Tamai K., He X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 17(1):9-26.
    Masuda E.S., Luo Y., Young C., Shen M., Rossi A.B., Huang B.C., Yu S., Bennett M.K., Payan D.G., Scheller R.H. (2000). Rab37 is a novel mast cell specific GTPase localized to secretory granules. FEBS Lett. 470:61-4.
    Mazieres J., He B., You L., Xu Z., Jablons D.M. (2005). Wnt signaling in lung cancer. Cancer Lett. 222(1):1-10.
    Meacham C.E., Morrison S.J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature. 501(7467):328-37.
    Pfeffer S.R. (2017). Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell. 28(6):712-5.
    Pietras A. (2011). Cancer stem cells in tumor heterogeneity. Adv Cancer Res. 112:255-81.
    Polakis P. (2012). Wnt Signaling in Cancer. Cold Spring Harb Perspect Biol. 4(5): a008052.
    Qin X., Wang J., Wang X., Liu F., Jiang B., Zhang Y. (2017). Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today. doi: 10.1016/j.drudis.2017.03.012.
    Reya T., Clevers H. (2005) Wnt signaling in stem cells and cancer. Nature. 434:843-50.
    Reya T., Morrison S.J., Clarke M.F., Weissman I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature. 414(6859):105-11.
    Saini S., Majid S., Dahiya R. (2011). The complex roles of Wnt antagonists in RCC. Nat Rev Urol. 8(12):690-9.
    Sakamori R., Das S., Yu S., Feng S., Stypulkowski E., Guan Y., Douard V., Tang W., Ferraris R.P., Harada A., Brakebusch C., Guo W., Gao N. (2012). Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. J Clin Invest. 122(3):1052-65.
    Scheel C., Eaton E.N., Li S.H., Chaffer C.L., Reinhardt F., Kah K.J., Bell G., Guo W., Rubin J., Richardson A.L., Weinberg R.A. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 145(6):926-40.
    Siegel RL, Miller KD, Jemal A. (2016). Cancer Statistics, 2016. CA Cancer J Clin. 66(1):7-30.
    Sławek S., Szmyt K., Fularz M., Dziudzia J., Boruczkowski M., Sikora J., Kaczmarek M. (2016). Pluripotency transcription factors in lung cancer-a review. Tumour Biol. 37(4):4241-9.
    Socinski M.A. (2004). Clinical issues in the management of non-small-cell lung cancer and the role of platinum-based therapy. Clin Lung Cancer. 5:274-89.
    Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 10(8):513-25.
    Stewart D.J. (2014). Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst. 106(1):djt356.
    Sundberg T.B., Darricarrere N., Cirone P., Li X., McDonald L., Mei X., Westlake C.J., Slusarski D.C., Beynon R.J., Crews C.M. (2011). Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. Chem Biol. 28, 1300-11.
    Suzuki H., Watkins D.N., Jair K.W., Schuebel K.E., Markowitz S.D., Chen W.D., Pretlow T.P., Yang B., Akiyama Y., Van Engeland M., Toyota M., Tokino T., Hinoda Y., Imai K., Herman J.G., Baylin S.B. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 36(4):417-22.
    Taiwan Ministry of Health and Welfare R.O.C.T. General Health Statistics (2016). http://health.ettoday.net/news/749900
    Tang Y.A., Chen C.H., Sun H.S., Cheng C.P., Tseng V.S., Hsu H.S., Su W.C., Lai W.W., Wang Y.C. (2015). Global Oct4 target gene analysis reveals novel downstream PTEN and TNC genes required for drug-resistance and metastasis in lung cancer. Nucleic Acids Res. 43(3):1593-608.
    Thatcher N., Faivre-Finn C., Blackhall F., Anderson H., Lorigan P. (2005). Sequential platinum-based chemotherapy-thoracic radiotherapy in early stage non-small cell lung cancer. Clin Cancer Res. 11:5051s-6s.
    Tong M., Chan K.W., Bao J.Y., Wong K.Y., Chen J.N., Kwan P.S., Tang K.H., Fu L., Qin Y.R., Lok S., Guan X.Y., Ma S. (2012). Rab25 is a tumor suppressor gene with antiangiogenic and anti-invasive activities in esophageal squamous cell carcinoma. Cancer Res. 72(22):6024-35.

    Tsai C.H., Cheng H.C., Wang Y.S., Lin P., Jen J., Kuo I.Y., Chang Y.H., Liao P.C., Chen R.H., Yuan W.C., Hsu H.S., Yang M.H., Hsu M.T., Wu C.Y., Wang Y.C. (2014). Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis and thus suppresses tumor metastasis. Nat Commun. 5:4804.
    Tzeng H.T., Tsai C.H., Yen Y.T., Cheng H.C., Chen Y.C., Pu S.W., Wang Y.S., Shan Y.S., Tseng Y.L., Su W.C., Lai W.W., Wu L.W., Wang Y.C. (2017) Dysregulation of Rab37-mediated cross-talk between cancer cells and endothelial cells via thrombospondin-1 promotes tumor neovasculature and metastasis. Clin Cancer Res. 23(9):2335-45.
    Visvader J.E., Lindeman G.J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 8(10):755-68.
    Wandinger-Ness A., Zerial M. (2014). Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol. 6(11):a022616.
    Wu C.Y., Tseng R.C., Hsu H.S., Wang Y.C., Hsu M.T. (2009). Frequent down-regulation of hRAB37 in metastatic tumor by genetic and epigenetic mechanisms in lung cancer. Lung Cancer. 63:360-7.
    Zerial M., McBride H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2(2):107-17.
    Zhan T, Rindtorff N, Boutros M. (2017). Wnt signaling in cancer. Oncogene. 36, 1461-73.
    Zhang W.C., Shyh-Chang N., Yang H., Rai A., Umashankar S., Ma S., Soh B.S., Sun L.L., Tai B.C., Nga M.E., Bhakoo K.K., Jayapal S.R., Nichane M., Yu Q., Ahmed D.A., Tan C., Sing W.P., Tam J., Thirugananam A., Noghabi M.S., Pang Y.H., Ang H.S., Mitchell W., Robson P., Kaldis P., Soo R.A., Swarup S., Lim E.H., Lim B. (2012). Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 148(1-2):259-72.
    Zhang J., Wei J., Lu J., Tong Z., Liao B., Yu B., Zheng F., Huang X., Chen Z., Fang Y., Li B., Chen W., Xie D., Luo J. (2013). Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3β/Snail signaling. Carcinogenesis. 34(10):2401-8.
    Zhou X.L., Qin X.R., Zhang X.D., Ye L.H. (2010) Downregulation of Dickkopf-1 is responsible for high proliferation of breast cancer cells via losing control of Wnt/beta-catenin signaling. Acta Pharmacol Sin. 31(2):202-10.
    Zhu Y., Shen T., Liu J., Zheng J., Zhang Y., Xu R., Sun C., Du J., Chen Y., Gu L. (2013). Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells. Cell Signal. 25(5):1075-85.

    下載圖示 校內:2019-12-31公開
    校外:2019-12-31公開
    QR CODE