簡易檢索 / 詳目顯示

研究生: 徐煥炫
Hsuan, Huan
論文名稱: 氧化鋅薄膜感測VOCs之研究
Sensing of VOCs with ZnO Thin Films
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 100
中文關鍵詞: 半導體薄膜氧化鋅氣體感測器EXAFSXANESCl-VOCs
外文關鍵詞: Self-assembling, ZnO, gas sensors, Cl-VOCs, XANES, EXAFS
相關次數: 點閱:114下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含氯揮發性有機物(Cl-VOCs)對人體及環境均會造成嚴重的危害,因此發展一套即時、連續而且利於攜帶之感測設備,可以防止Cl-VOCs所可能帶來的危害。雖然ZnO薄膜感測器已被廣泛研發及應用,但針對Cl-VOCs之感測特性相對未被重視,而且ZnO薄膜感測Cl-VOCs時的機制並未完全了解,因此,本研究之主要目的包括:(1)合成氧化鋅(ZnO)薄膜;(2)合成Fe/ZnO (Fe-doping ZnO) 及 Al/ZnO (Al doped ZnO) 薄膜並研究其對C2H5OH之靈敏度及再現性;(3)研究ZnO薄膜感測Cl-VOCs (CCl4、CHCl3、CH2Cl2、chlorophenols及chlorobenzenes)及C2H5OH之靈敏度及再現性;(4)分析感測CCl4及 C2H5OH時薄膜之鋅之即時精細結構分析;(5)設計即時感測系統。
    實驗結果顯示,自組合產生之ZnO、Fe/ZnO及Al/ZnO薄膜,表面大部分為排列良好之奈米粒子。對C2H5OH之感測時間(response time)皆低於2分鐘,而且具有可接受之靈敏度(Rair/Rethanol) (>10)及再現性。ZnO薄膜對C2H5OH 之感測電阻之變化與Cl-VOCs相反。ZnO薄膜對其他少氯之Cl-VOCs (CHCl3或CH2Cl2)之感測度類似CCl4,靈敏度隨含氯量之減少而減少。即時X射線吸收近邊緣結構(X-ray absorption near edge structural (XANES))光譜顯示ZnO薄膜中鋅之主要物種為奈米ZnO(95%)及ZnO(5%),當通入200 ppm C2H5OH時,發現少量Zn(OH)2 (7%)生成;當通入1000 ppm CCl4後發現少量Zn(5%),兩者均消失於停止通入氣體後。X射線吸收光譜之延伸區微細結構(extended X-ray absorption fine structural (EXAFS))光譜顯示ZnO薄膜中鋅之Zn-O鍵距為1.92 Å,當通入200 ppm C2H5OH 後Zn-O鍵距微幅增加至1.93 Å;當通入1000 ppm CCl4後Zn-O鍵距微幅減少至1.90 Å,兩者也於停止通入氣體後均恢復至1.92 Å。依據上述實驗數據也初步設計一套Cl-VOCs感測系統,成為一種可以在可能具Cl-VOCs存在風險之場所之個人防護器具。

    The hidden danger of Cl-containing volatile organic compounds (Cl-VOCs) may exacerbate the environment and human health. ZnO thin films have been widely used in sensing of Cl-VOCs. However, speciation of thin films during sensing gases, especially for the Cl-VOCs, is still lacking in the literature. Thus, the main objectives of this work were (1) Synthesis of ZnO, Fe/ZnO and Al/ZnO thin films, (2) Determination of sensitivity, response time, and reproducibility of the ZnO, Fe/ZnO, and Al/ZnO thin films with C2H5OH, (3) Determination of sensitivity, response time, and reproducibility of the ZnO thin films with Cl-VOCs, (4) Speciation studies of zinc in the ZnO, Fe/ZnO, and Al/ZnO thin films, and (5) Conceptual design of a ZnO thin film based sensor for sensing of Cl-VOCs as well as C2H5OH and phenols.
    Experimentally, it is found that the ZnO, Fe/ZnO, and Al/ZnO thin films are consisted of nanosize particles that are packed closely and well-distributed. The mean particle size in the thin film is about 100 nm. The nanosize ZnO, Fe/ZnO, and Al/ZnO thin films have a good sensitivity (Rair/RC2H5OH) (>10) to C2H5OH with a short response time (about 2 min). A good reproducibility for the ZnO thin film in sensing of C2H5OH vapor has also been observed. During sensing of Cl-VOCs at 333 K, the ZnO thin films also posses a high sensitivity, low response time and good reproducibility.
    By XANES (X-ray absorption near edge structure) spectroscopy, during sensing of 1000 ppm of CCl4, nanosize ZnO (90%) and a small amount of metallic zinc (5%) have been observed on the ZnO thin film. When sensing of 200 ppm C2H5OH, in addition to nanosize ZnO (88%), Zn(OH)¬2 (7%) was found on the thin film. The EXAFS data also shows that as CCl4 is introduced onto the thin film, the bond distance of Zn-O is decreased slightly from 1.92 to 1.91 Å, which may be due to the fact that electrons of oxygen on the ZnO surfaces are withdrawn by the absorbed CCl4 (Zn-O…>Cl…>Cl4). On the contrary, the Zn-O bond distance is increased slightly from 1.92 to 1.93 Å in the presence of 200 ppm of C2H5OH. Interaction of C2H5OH with zinc (C2H5(H)O…>ZnO) on the surfaces of ZnO may occur. A simple, cheap, miniaturized and portable device has, therefore, been designed based on experimental data for sensing of Cl-VOCs as well as C2H5OH and phenols.

    中文摘要 I ABSTRACT II 致謝 III CONTENT IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE SURVEY 3 2.1 Cl-VOCs 3 2.1.1 CH2Cl2 3 2.1.2 CH3Cl3 3 2.1.3 CCl4 4 2.2 The Transparent Conducing Oxide Thin-Films 5 2.2.1 Basic Properties of TCO Thin Films 5 2.3 Zinc Oxide Thin Films 8 2.3.1 Doping 8 2.3.1.1 Doping theory 8 2.3.1.2 Quantum mechanics of doping 9 2.4 Gas Sensors 11 2.4.1 Semiconducting Transparent Thin-Film Gas Sensors 11 2.4.2 Adsorption theory 13 2.4.3 Sensing Mechanisms 13 2.4.4. Factors Affect the Sensing Behaviors 19 2.4.5 Chlorinated Methanes Detected with TCO Thin Films 19 2.5 Self Assembling Method 24 2.5.1 Sol gel 24 2.5.2 Dip coating 24 CHAPTER 3 EXPERIMENTAL METHODS 28 3.1 The Experimental Design 28 3.2 Preparations of Thin Films 30 3.2.1 Preparation of ZnO sol gels 30 3.2.2 Preparation of Fe/ZnO sol gels 30 3.2.3 Preparation of Al/ZnO sol gels 30 3.2.4 Dip coating 30 3.3 Characterization of the Thin Films 33 3.3.1 X-Ray Diffraction Spectroscopy (XRD) 33 3.3.2 Surface Morphology Measurements 33 3.4 Sensitivity Measurements 33 3.5 In-situ X-ray Absorption Spectroscopy (XAS) 35 CHAPTER 4 RESULTS AND DISCUSSION 39 4.1Chemical structure of zinc in the ZnO thin films during sensing of C2H5OH 39 4.2 Sensing of C2H5OH on Fe/ZnO and Al/ZnO Thin Films 48 4.2.1 Sensing of C2H5OH on the Fe/ZnO Thin Films 48 4.2.2 Sensing of C2H5OH on the Al/ZnO Thin Films 55 4.3Sensing of Cl-VOCs with nanosize ZnO Thin Films 62 4.4Sensing of Chlorophenols with Nanosize ZnO Thin Films 69 4.5A Preliminary Design of Large-scale Real-Time Cl-VOCs Sensing System 76 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 81 REFERENCES 83 APPENDIXES 90 Appendix A Speciation of Zinc in Nano Phosphor Particulars Abstracted in an Ionic Liquid 90 TABLES Table 2.1 Some properties of transparent conducting oxides at room temperature. 6 Table 2.2 Typical deposition techniques used for the preparation of semiconducing gas sensor. 7 Table 2.3 Resistance responses expected for oxidizing and reducing gases on n- and p- type semiconducing oxides. 16 Table 2.4 List of studies on semiconducting metal oxides for detecting chlorinated methanes. 23 Table 4.1.1 In-situ EXAFS data of zinc in the thin film during sensing of 300 ppm C2H5OH at 300 K 47 Table 4.2.1 In-situ EXAFS data of zinc and iron in the Fe/ZnO thin film during sensing of 300 ppm of C2H5OH at 300K ( mL/min) 54 Table 4.2.2 In-situ EXAFS data of zinc in the Al/ZnO thin film during sensing of 300 ppm C2H5OH at 300K ( mL/min) 60 Table 4.3.1 In-situ EXAFS data of zinc in the ZnO thin film during sensing of 1000 ppm CCl4 at 333 K 66 Table 4.4.1 Sensitivities of the ZnO thin film in the presence of Cl-VOCs, phenols, and C2H5OH 73 Table 4.5.1 Key factors that can be used in sensing of Cl-VOCs, C2H5OH, and phenols 79 FIGURES Figure 2.1 Structure of ZnO: (a)Wurtzite and (b) Zinc blende structure 10 Figure 2.2 Classification of sensors according to the principle of operation 12 Figure 2.3 Relative energy level for (a) adsorption without dissociation and (b) dissociative adsorption as a function of distance between adsorbate and absorbent. 12 Figure 2.4 Barriers at intergranular contacts on a pressed pellet. (a) Three grains with adsorbed oxygen providing surface depletion layers cause a high contact resistance. (b) The corresponding band model for a more quantitative analysis where, for conductance, electrons must cross over the surface barriers. 17 Figure 2.5 A model of a potential barrier to electronic conduction at a grain boundary. 18 Figure 2.6 Schematic models for grain-size effects. Hatched parts shows core region (low resistance), while the unhatched part refers to the space-charge region (high resistance). 20 Figure 2.7 Illustration of layered nano architectures: (a) Reversed “Duckweed” LB film and (b) Self-assembling film with interdigitated structure. 25 Figure 2.8 Simplified molecular picture of film deposition starting with a positively charged substrate. The polyion conformation and layer interpenetration are an idealization of the surface charge reversal with each adsorption step[Decher, 1991]. 26 Figure 3.1 Flow chat of experiments. 29 Figure 3.2 A flowchart for the preparation of the thin films. 31 Figure 3.3 Dip coater. 32 Figure 3.4 A schematic diagram of the Cl-VOCs sensing system. 34 Figure 3.5 Schematic apparatus for in-situ XANES and EXAFS experiments. 37 Figure 3.6  A schematic illustration of typical X-ray absorption spectroscopic experiment 38 Figure 4.1.1 X-ray diffraction pattern of the ZnO thin film 41 Figure 4.1.2 SEM of the ZnO thin film. 42 Figure 4.1.3 Resistances of the ZnO thin film in the presence or absence of 200 ppm of ethanol at 300 K 43 Figure 4.1.4 Sensitivity of the ZnO thin film in the presence of 200-500 ppm of C2H5OH at 300 K 44 Figure 4.1.5 Component fitted XANES spectra of zinc in the (a) ZnO thin film in the (b) presence and (c) absence of C2H5OH (200 ppm) at 300 K. 45 Figure 4.2.1 X-ray diffraction patterns of the Fe/ZnO thin film 49 Figure 4.2.2 SEM of the Fe/ZnO thin film 50 Figure 4.2.3 Component fitted XANES spectra of (a) zinc and (b) iron species in the Fe/ZnO thin film 51 Figure 4.2.4 Resistances of the Fe/ZnO thin film in the presence or absence of 300 ppm C2H5OH at 300 K 52 Figure 4.2.5 X-ray diffraction patterns of the Al/ZnO thin film. 56 Figure 4.2.6 SEM of the Al/ZnO thin film 57 Figure 4.2.7 Component fitted XANES spectra of zinc species in the Al/ZnO thin film when sensing of C2H5OH 58 Figure 4.2.8 Resistances of the Al/ZnO thin film in the presence or absence of 300 ppm C2H5OH at 300 K 59 Figure 4.3.1 Fig. 4.3.1 Component fitted XANES spectra of zinc species in the ZnO thin film when (a) prior to sensing, (b) in the presence of 1000 ppm CCl4, (c) in the absence of ethanol 64 Figure 4.3.2 Resistances of the ZnO thin film in the presence of 1000 ppm (a) CCl4, (b) CHCl3, and (c) CH2Cl2 at 333 K. 65 Figure 4.3.3 Relationship between gas sensitivity and gas concentration for a ZnO thin film ( at 333 K). 68 Figure 4.4.1 Resistances of the ZnO thin film in the presence of 1000 ppm of (a) chlorophenol, (b) chlorobenzene, and (c) phenol at 333 K. 74 Figure 4.4.2 Sensitivity of ZnO thin film in the presence of 300-1000 ppm of (a) phenol, (b) chlorophenol, and (c) chlorobenzene 75 Figure 4.5.1 Schematic diagram of a designed real-time Cl-VOCs sensor. 80

    Bae H. Y. and Choi G. M., Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method, Sensors and Actuators B, 55, 47–54, 1999.
    Bandyopadhyay S., Paul G. K., Roy R., Sen S. K., and Sen S., Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique, Mater. Chem. Phys. 74, 83–91, 2002.
    Bell B., Franks P., Hildreth N., and Melius J., Methylene chloride exposure and birthweight in Monroe County, New York Environ Res, 55, 1, 9-31, 1991.
    Bender M., Gagaoudakis E., Douloufakis E., Natsakou E., Katsarakis N., Cimalla V., Kiriakidis G., Fortunato E., Nunes P., Marques A., and Martins R., Production and characterization of zinc oxide thin films for room temperature ozone sensing, Thin Solid Films 418, 45–50, 2002.
    Bene, R., Kiss, G., Perczel, I. V., Meyer, F. A., and Reti, F., Application of quadrupole mass spectrometer for the analysis of near-surface gas composition during DC sensor-tests, Vacuum, 50(3-4), 331-337, 1998.
    Cao, Z. and Stetter, J. R., A selective solid-state gas sensor for halogenated hydrocarbons, Sensors and Actuators B, 5, 109-113, 1991.
    Cha K. H., Park H. C., and Kim K. H., Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2, Sensors and Actuators B, 21, 91-96, 1994.
    Chaturvedi, A., Mishra, V. N., Dwivedi, R., and Srivastava, S. K., Response of oxygen plasma-treated thick film tin oxide sensor array for LPG, CCl4, CO and C3H7OH, Microelectronics Journal ,30(3), 259-264,1999.
    Chen C. Y., Sensing of Cl-containing VOCs with Indium-zinc-oxide Thin Films 2004
    Cheng X. L.., Zhao H., Huo L.H., Gao S., Zhao J.G.., ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Sensors and Actuators B 102, 248–252, 2004.
    Choi, J. J., Kim, H. P., Cheong, H. W., and Kim, J. M., Responses of SnO2-based sensors for vapors with electron-accepting groups, Sensors and Actuators B, 13-14, 515-516, 1993.
    Ciureanu P., Thin Film Resistive Sensors, Institute of Physics Publishing, New York, 451-452, 1992.
    Dawson, D. H. and Williams, D. E., Gas-sensitive resistors: Surface interaction of chlorine with semiconducting oxides, Journal of Materials Chemistry, 6(3), 409-414, 1996.
    Decher G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Science, 277, 1232, 1991.
    Fagin J., Bradley J., and Williams D., Carbon monoxide poisoning secondary to inhaling methylene chloride, Br Med J 281, 6253, 1461, 1980.
    Gentry R. L., Kooyman G. L., and Goebel M. E., Feeding and diving behavior of northern fur seals, Maternal Strategies on Land and at Sea, 61-78, 1986.
    Gentry S. J. and Jones T. A., The Role of Catalysis in Solid-State Gas Sensors, Sensors and Actuators, 10, 141, 1986.
    Gruber D., Kraus F., and Müller J., A novel gas sensor design based on CH4/H2/H2O plasma etched ZnO thin films, Sensor and Actuators B, 92, 81–89, 2003.
    Hartnagel, H. L., Dawar, A. L., Jain, A. K., and Jagadish, C., Semiconducting transparent thin films, Institude of Physics Publishing, London, 1995.
    Jiménez-González A. E., Soto Urueta J. A., and Suárez-Parra R., Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by sol–gel technique, J. Cryst. Growth, 192, 430–438, 1998.
    Koshizaki N., and Oyama T., Sensing characteristics of ZnO-based NOx sensor, Sensors and Actuators B, 66, 119–121, 2000.
    Lennard-Jones J. E., Trans. Faraday Soc., 28, 333, 1932.
    Li B. S., Liu Y. C., Zhi Z. Z., Shen D. Z., Lu Y. M., Zhang J. Y., Kong X. G., and Fan X. W., Effect of the growth temperature on ZnO thin films grown by plasma enhanced chemical vapor deposition, Thin Solid Films 414, 170–174, 2002.
    Liu D. M., Hernandez J. A., Kamloth K. P., and Liess H. D., A new carbon monoxide sensor using polypyrrole film grow on an interdigital- capacitor substrate, Sensors and Actuators B, 41, 203, 1997.
    Meulenkamp E. A., Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B, 102, 5566–5572, 1998.
    Meulenkamp E. A., Size dependence of the dissolution of ZnO nanoparticles, J. Phys. Chem. B, 102, 7764–7769, 1998.
    Mitra P., Chatterjee A. P., and Maiti H. S., ZnO thin film sensor, Mater. Lett., 35, 33–38, 1998.
    Miyata, T., Minami, T., Shimokawa, K., Kakumu, T., and Ishii, M., New materials consisting of multicomponent oxides for thin-film gas sensors, Journal of the Electrochemical Society, 144(7), 2432-2436, 1997.
    Moseley, P. T., New trends and future prospects of thick and thin-film gas sensors, Sensors and Actuators B, 3, 167-174, 1991.
    Nanto H., Sokooshi H., and Usuda T., Smell Sensor Using Aluminum-Doped Zinc Oxide Thin Film Prepared by Sputtering Technique, Sensors and Actuators B, 10, 79-83, 1993.
    Nunes P., Fortunato E., Lopes A., and Martins R., Influence of the deposition conditions on the gas sensitivity of zinc oxide thin films deposited by spray pyrolysis, Int. J. Inorg. Mater. 3 1129–1131, 2001.
    Ohshima T., Thareja R. K., Yamagata Y., Ikegami T., Ebihara K., and Narayan J., Laser-ablated plasma for deposition of ZnO thin films on various substrates, Sci. Tech. Adv. Mater., 2, 517–523, 2001.
    Osborne J. J., Roberts G. T., Chambers A. R., and Gabriel S. B., Thin film semiconductor sensors for hyperthermal oxygen atoms, Sensor and Actuators B 63, 55–62, 2000.
    Paraguay F., Miki-Yoshida M., Morales J., Solis J, and Estrada W., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapor, Thin Solid Films, 373, 137-140, 2000.
    Park, S. H., Son, Y. C., Shaw, B. R., Creasy, K. E., and Suib, S. L., Detection of chlorinated methanes by tin oxide gas sensors, Analyst, 126(8), 1382-1386, 2001.
    Patel, N. G., Makhija, K. K., Panchal, C. J., Dave, D. B., and Vaishnav, V. S., Fabrication of carbon tetrachloride gas sensors using indium tin oxide thin films, Sensors and Actuators B, 23, 49-53, 1995.
    Recknagel R.O., Glende E.A., Dolak J.A., and Waller R.L., Mechanism of Carbon-tetrachloride Toxicity, Pharmacology Therapeutics, 43, 139-154, 1989.
    Roobol, N.R. Industrial Painting: Principles and Practices. Carol Stream, IL: Hitchcock Publishing Co, 1991.
    Saito S., Miyayama M., Koumoto K., and Yanagida H., Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics, J. Am. Ceram. Soc., 68, 40–43, 1985.
    Sberveglieri G., Groppelli S., Nelli P., and Gamanzi A., Bismuth-dpoed tin oxide thin-film gas sensors, Sensors and Actuators B, 3 183-189, 1991.
    Seiyama T., and Kato A., A new detector for gaseous components using semiconductor thin film, Anal. Chem., 34, 1502–1503, 1962.
    Shimizu, Y., and Egashira, M., Basic aspects and challenges of semiconductor gas sensors, MRS Bulletin, 24(6), 18-24, 1999.
    Simon, T., Barsan, N., Bauer, M., and Weimar, U., Micromachined metal oxide gas sensors: opportunities to improve sensor performance, Sensors and Actuators B, 73, 1-26, 2001.
    Stambolova I., Konstantinov K., Vassilev S., Peshev P., and Tsacheva Ts., Lanthanum doped SnO2 and ZnO thin films sensitive to ethanol and humidity, Mater. Chem. Phys., 63, 104–108, 2000.
    Sze, S. M., Semiconductor Sensors, John Wiley & Sons, Inc., Third Avenue, New York, 1994.
    Torvela, H., Dual Response of Tin Dioxide Gas Sensors Characteristic of gaseous carbon tetrachloride, Sensors and Actuators B, 4, 445-450, 1991.
    Toshko, G. N., and Stefcho, P. Y., Ceramic sensors, Technomic Publishing Company, Inc. New Holland Avenue, 1996.
    USDHHS, Toxicological Profile for Methylene Chloride, Retrieved on 2006-09-10

    Walker, S. J., Weiss, R. F., and Salameh, P. K., Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC-11, CFC-12, CFC-113 and carbon tetrachloride, Journal of Geophysical Research, 105, 14285-14296, 2000.
    Wells G., and Waldron H., Methylene chloride burns, Br J Ind Med, 41, 3, 420, 1984.
    Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Grain size effect on gas sensitivity of porous SnO2-based element, Sensors and Actuators B, 3, 147-155, 1991.
    Xu J. Q., Shun Y. A., Pan Q. Y., and Qin J. H., Sensing characteristics of double layer film of ZnO, Sens. Actuators B, 66, 161–163, 2000.
    Yamazoe, N., New approaches for improving semiconductor gas sensors, Sensors and Actuators B, 5, 7-19, 1991.
    Yong, D., Zhong L. W., Tianjun S., and Jieshan Q., Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires, Applied Physics Letters 90, 153510, 2007.
    Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C., and Eller, M. J., Multiple-scattering calculations of X-ray absorption spectra. Physical review.B-Condensed matter, 52, 2995-3009, 1995.
    Zhang, K. R., Zhu, F. R., Huan, C. H., A., Wee, A. T. S., and Osipowicz, T., Indium-doped zinc oxide films prepared by simultaneous r.f. and d.c. magnetron sputtering, Surface and Interface Analysis, 28 (1), 271-274, 1999.

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE