| 研究生: |
余佳霖 Yu, Chia-Lin |
|---|---|
| 論文名稱: |
氮化鎵系列低漏電流光檢測器及金半異質場效電晶體之製作與元件特性分析 Fabrication and Characterization of GaN-based Photodetectors and Heterostructure Field Effect Transistors with Low Leakage Current |
| 指導教授: |
張守進
Chang, Shoou-Jinn 莊文魁 Chuang, Ricky Wenkuei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 異質場效電晶體 、氮化鎵 、光檢測器 |
| 外文關鍵詞: | Photodetector, GaN, HFET |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
首先在紫外光檢測器方面,我們利用高功函數的銥鉑合金作為氮化鎵金半金光檢測器的蕭基接觸。與傳統鎳金接觸電極比較,以銥鉑合金製作的金半金光檢測器可降低兩個數量級的暗電流,同時具有較好的熱穩定性及較高的崩潰電壓。我們也使用銥鉑合金與低溫氮化鎵覆蓋層來製作氮化鎵金半金光檢測器,我們發現雖然光電流減少,但相對的檢測器的暗電流降低,紫外光與可見光的拒斥比升高,而且最低雜訊等效功率及檢測度分別為2.75×10-13 W及2.77×1012 cmHz0.5W-1。之後我們利用半透明的銥鉑合金製作蕭基光檢測器,並研究回火對元件特性的影響。發現回火後,銥鉑合金在波長365nm處的穿透率由43.5%提升到68.7%,且銥鉑合金表面也變的比較粗糙。由能量散射光譜分析,我們認為此結果是由於氧化銥的形成。回火後,蕭基光檢測器的漏電流亦可降低四個數量級。此外,其360nm光響應值及量子效率分別為0.19 A/W及65%,且紫外光對可見光的拒斥比可達1050。
藉由上述的結果,我們更進一步應用低溫氮化鋁覆蓋層及未活化的鎂摻雜氮化鎵覆蓋層來製作氮化鎵光檢測器。與傳統無覆蓋層的蕭基能障光檢測器相比,藉著加入此覆蓋層可以降低暗電流值、增加紫外光與可見光拒斥比及檢測率,此可歸因於覆蓋層可以導致較大與較厚蕭基能障,且對半導體表面能態有鈍化的作用。在-1V的偏壓下,具有低溫氮化鋁及鎂摻雜氮化鎵覆蓋層的拒斥比分別為3.17×103 and 3.52×103。在-5V的偏壓下,無覆蓋層、具有低溫氮化鋁覆蓋層及具有鎂摻雜氮化鎵覆蓋層的光檢測器之檢測度分別為5×107 cmHz0.5W-1, 5.63×1010 cmHz0.5W-1, and 9.34×1011 cmHz0.5W-1。因此,藉由此研究結果,我們知道將低溫氮化鋁及鎂摻雜氮化鎵覆蓋層應用在氮化鎵光檢測器的製作上,可降低元件漏電流且改善元件特性。我們進一步使用氮化銦鎵/氮化鎵多重量子井取代傳統氮化鎵活性層。我們亦發現在多重量子井上覆蓋鎂摻雜的氮化鎵層,其金半金光檢測器的暗電流值依然維持在10-11A左右,但其光響應值可提高到0.366 A/W。此外,多重量子井光檢測器的最低雜訊等效功率及檢測度分別為4.09×10-14 W及1.18×1013 cmHz0.5W-1。
在異質結構場效電晶體方面,我們使用偏角度的藍寶石基板成長氮化鋁鎵/氮化鎵異質結構。可以發現使用偏角度的藍寶石基板成長可以有效的降低其缺陷與差排密度,其蕭基能障二極體的漏電流可降低兩個數量級,同時也具有較高的能障高度及較小的理想因子。此外,藉著電容-電壓的量測,可以發現多數載子被侷限於氮化鋁鎵與氮化鎵界面處。我們亦使用偏角度的試片去製作金半異質場效電晶體,發現可以有效降低閘極漏電流,且其室溫下的最大轉導值為110mS/mm。在1.25μm的閘極線寬下,其電流增益截止頻率及最高震盪頻率分別為7.6及9.8 GHz。因此,使用偏角度基板製作的氮化鋁鎵/氮化鎵金半異質場效電晶體將可適用低雜訊、高功率及高溫的應用。
The main goal of this dissertation is the fabrication and analyses of GaN-based ultraviolet (UV) photodetectors (PDs) and metal-semiconductor heterostructure field effect transistors (MES-HFETs).
First, we use Ir/Pt alloy with high work function as the Schottky contacts of metal-semiconductor-metal (MSM) PDs. Compared to conventional Ni/Au contacts, the dark current of the MSM PDs with Ir/Pt alloys can be reduced by two orders. Besides, the MSM PDs with Ir/Pt contacts had the better thermal stability and higher breakdown voltage. We also fabricated GaN MSM PDs with Ir/Pt contact electrode and LT GaN cap layer. Although the photocurrent was smaller, we achieved smaller dark current and larger UV to visible rejection ratio for the PD with Ir/Pt contact electrode and LT GaN cap layer. Furthermore, noise equivalent power (NEP) and normalized detectivity (D*) were correspondingly determined as 2.75×10-13 W and 2.77×1012 cmHz0.5W-1. Then, we use semi-transparent Ir/Pt alloy to fabricate the Schottky barrier PDs, and research the effect of annealing on devices characteristics. After annealing, the transmittance of Ir/Pt alloy improves from 43.5% to 68.7% at 365 nm, and the surface morphology becomes rougher. We think the result can be attributed to the formation of IrOx. Besides, the leakage current of Schottky barrier PDs also reduce four orders. The responsivity and quantum efficiency at a wavelength of 360 nm are 0.19 A/W and 65%, and UV to visible rejection ratio is 1050.
Based on the aforementioned results, we apply in-situ low-temperature AlN and un-activated Mg-doped GaN layer to the fabrication of GaN-based PDs. Compared with conventional Schottky barrier PDs without cap layer, it was found that we can achieve significantly much smaller dark current, larger UV to visible rejection ratio and larger normalized detectivity by inserting the LT AlN or Mg-doped GaN cap layer. This result could be attributed to the thicker and higher potential barrier and effective surface passivation after inserting in-situ grown cap layer. Under a -1 V bias, it was found that the UV to visible rejection ratios were 3.17×103 and 3.52×103 for PDs with LT AlN and un-activated Mg-doped GaN layer, respectively. We also found that noise behavior for this type of PDs was flicker noise. Under a -5 V applied bias, it is also found that we can achieve a lower noise level and a higherr normalized detectivity by inserting an in-situ grown cap layer. D* for PDs without cap layer, with LT AlN cap layer and with Mg-doped GaN cap layer was 5×107, 5.63×1010, and 9.34×1011 cmHz0.5W-1, respectively. Therefore, PDs with LT AlN cap layer or Mg-doped GaN cap layer can be used to reduce dark leakage current and improve the device characteristics. We also used the InGaN/GaN multi-quantum well (MQW) in place of the conventional GaN active layer. The dark current of MQW MSM PD with un-activated Mg-doped GaN layer is still around 10-11 A. For PDs with un-activated Mg-doped GaN cap layer, the responsivity at 380 nm and UV to visible rejection ratio were 0.366 A/W and 1.93×103 when biased at 5 V, respectively. Besides, NEP and D* are calculated to be 4.09×10-14 W and 1.18×1013 cmHz0.5W-1.
On the part of HFETs, we demonstrate a new technique of growing AlGaN/GaN heterostructures on vicinal-cut sapphire substrates. The vicinal-cut substrates are proved to reduce the threading dislocations (TDs) of our epilayers. AlGaN/GaN Schottky barrier diodes on vicinal-cut sapphire substrates have the smaller leakage current, higher barrier height and smaller ideality factor. We also obtain the carrier distribution profile from C-V measurement and find the majority of carriers is well confined. Then, we fabricate MES-HFETs by AlGaN/GaN heterostructures on vicinal-cut sapphire substrates, and find that the gate leakage current can be reduced effectively. The Gm,max is 110 mS/mm at room temperature. The extrinsic current-gain cut-off frequency (fT) and maximum frequency of oscillation (fmax) were 7.6 and 9.8 GHz, respectively, for 1° sample with 1.25-μm-gate length. Therefore, AlGaN/GaN HFETs on vicinal-cut sapphire substrates are potentially useful for low-noise, high power and high temperature applications.
Chapter 1
[1] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenburg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys., Vol. 44, pp. 292-296, 1973.
[2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, pp. 1246-1248, 2002.
[3] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobility in gallium, indium, and aluminum nitrides,” J. Appl. Phys., Vol. 75, pp. 7365-7372,1994.
[4] S. N. Mohammed and H. Morkoc, “Progress and prospects of group-III nitride semiconductors,” Prog. Quant. El., Vol. 20, pp. 361-525, 1996.
[5] R. T. Kemerlay, H. B. Wallace, and M. N. Yoder, “Impact of Wide Bandgap Microwave Devices on DoD systems,” Proceeding of the IEEE, Vol. 90, pp. 1059-1064, 2002.
[6] Michael S. Shur, and M. Asif Khan, “GaN/AlGaN Heterostructure Devices: Photodetectors and Field Effect Transistors,” MRS Bulletin, Vol. 22, pp. 44-50, 1997.
[7] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The Growth of Single Crystalline GaN on a Si Substrate Using AlN as an Intermediate Layer,” J. Cryst. Growth, Vol. 128, pp. 391-396, 1993.
[8] V. Dmitriev, K. Irvine, G. Bulman, J. Edmond, A. Zubrilov, V. Nikolaev, I. Nikitina, D. Tsvetkov, A. Babanin, A. Sitnikova, Y. Musikhin, and N. Bert, “Growth and characterization of GaN layers on SiC substrates,” J. Cryst. Growth, Vol. 166, pp. 601-606, 1996.
[9] A. Kuramata, K. Horino, K. Domen, K. Shinohara, and T. Tanahashi, “High-Quality GaN Epitaxial Layer Grown by Metal-Organic Vapor-Phase Epitaxy on (111) MgAl2O4 Substrate,” Appl. Phys. Lett., Vol. 67, pp. 2521-2523, 1995.
[10] C. R. Miskys, M. K. Kelly, O. Ambacher, G. Martinez-Criado, and M. Stutzmann, “GaN homoepitaxy by metalorganic chemical-vapor deposition on free-standing GaN substrates,” Appl. Phys. Lett., Vol. 77, pp. 1858-1860, 2000.
[11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., Vol. 48, pp. 353-355, 1986.
[12] S. Nakamura, “GAN GROWTH USING GAN BUFFER LAYER,” Jpn. J. Appl. Phys., Vol. 30, pp. L1705-L1707, 1991.
[13] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-2114, 1998.
[14] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142, 1992.
[15] B. Yang, K. Heng, T. Li, C. J. Collins, S. Wang, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “32×32 ultraviolet Al0.1Ga0.9N/GaN p-i-n photodetector array,” IEEE J. Quan. Electron., Vol. 36, pp. 1229-1231, 2000.
[16] M. Higashiwaki, T. Mimura, and T. Matsui, “30-nm-gate AlGaN/GaN heterostructure field-effect transistors with a current-gain cutoff frequency of 181GHz,” Jpn. J. Appl. Phys., Vol. 45, pp. L1111-L1113, 2006.
[17] N. Tipirneni, A. Koudymov, V. Adivaraban, J. Yang, G. Simin, M. A. Khan, “The 1.6-kV AlGaN/GaN HFETs,” IEEE Electron Device Lett., Vol. 27, pp. 716-718, 2006.
[18] S. Nuttinck, B. K. Wagner, B. Banerjee, S. Venkataraman, E. Gebara, J. Laskar, H. M. Harris, “Thermal analysis of AlGaN-GaN power HFETs,” IEEE Trans. Microw. Theory Tech., Vol. 51, pp. 2445-2452, 2003.
Chapter 2
[1] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
[2] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, New York, Plenum Press, 1984.
[3] E. H. Rhoderick, and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, 1988, ch. 1.
[4] A. G. Milnes and D. L. Feucht, Heterojunction and Metal-Semiconductor Junctions, New York, Academic Press, 1972.
[5] S. M. Sze, Physics of Semiconductor Devices, New York, John Wiley & Sons, 1981.
[6] J. Bardeen, “Surface States and Rectification at a Metal-Semiconductor Contact,” Phys. Rev., Vol. 71, pp. 717-727, 1947.
[7] V. Heine, “Theory of Surface States,” Physical Review, Vol. 138, p. A1689, 1965.
[8] J. Tersoff, “Schottky Barrier Heights and the Continuum of Gap States,” Physical Review Letters, Vol. 52, pp. 465, 1984.
[9] C. A. Mead, “Metal-Semiconductor Surface Barriers,” Solid-State Electron., Vol. 9, pp. 1023-1032, 1966.
[10] E. R. Rhoderick, “Metal-Semiconductor Contacts,” IEE Proc., Vol. 129, pp. 1-24, 1982.
[11] V. T. Cherepin, Secondary Ion Mass Spectroscopy of Solid Surfaces, VNU Science Press, 1987.
[12] P. Ruterana, M. Albrecht, and J. Neugebauer, Nitride Semiconductors : handbook on materials and devices, Wiley-VCH, Weinheim, 2003.
[13] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., Vol. 68, pp. 643-645, 1996
[14] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett., Vol. 77, pp. 2557-2559, 2000.
[15] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., Vol. 86, pp. 043108, 2005.
Chapter 3
[1] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 7433-7473, 1996.
[2] P. Kozodoy, J. P. lbbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., Vol. 73, pp. 975-977, 1998.
[3] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., Vol. 83, pp. 6148-6160, 1998.
[4] E. J. Miller, X. Z. Dang, and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” J. Appl. Phys., Vol. 88, pp. 5951-5958, 2000.
[5] S. N. Mohammad, Z. Fan, A. E. Botchkarev, W. Kim, O. Aktas and A. Salvador, “Near-ideal platinum–GaN Schottky diodes,” Electron. Lett., Vol. 32, pp. 598-599, 1996.
[6] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN,” J. Appl. Phys., Vol. 80, pp. 1623-1627, 1996.
[7] E. Monroy, F. Calle, T. Palacios, J. Sanchez-Osorio, M. Verdu, F. J. Sanchez, M. T. Montojo, F. Omnes, Z. Bougrioua, I. Moerman, and P. Ruterana, “Reliability of Schottky Contacts on AlGaN,” Phys. Stat. Sol. (a), Vol. 188, pp. 367-370, 2001.
[8] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang and I. Adesida, “High temperature characteristics of Pd Schottky contacts on n-type GaN,” Electron. Lett., Vol. 32, pp. 1832-1833, 1996.
[9] C. M. Jeon, H. W. Jang and J. L. Lee, “Thermally stable Ir Schottky contact on AlGaN/GaN heterostructure,” Appl. Phys. Lett., Vol. 82, pp. 391-393, 2003.
[10] J. K. Kim, H. W. Jang, C. M. Jeon and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact,” Appl. Phys. Lett., Vol. 81, pp. 4655-4657, 2002.
[11] H. Jiang, T. Egawa, H. Ishikawa, Y. B. Dou, C. L. Shao and T. Jimbo, “Low dark current GaN Schottky UV photodiodes using oxidized IrNi Schottky contact,” Electron. Lett., Vol. 39, pp. 1604-1606, 2003.
[12] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, C. H. Liu, H. Hung, S. M. Wang, “InGaN/GaN multi-quantum well metal-insulator semiconductor photodtectors with photo-CVD SiO2 layers,” Jpn. J. Appl. Phys., Vol. 43, pp. 2008-2010, 2004.
[13] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., Vol. 82, pp. 4304-4306, 2003.
[14] L. W. Yin, Y. Hwang, J. H. Lee, R. M. Kolabas, R. J. Trew, and U. K. Mishra, “Improved breakdown voltage in GaAs MESFET’s utilizing surface layers of GaAs grown at a low temperature by MBE,” IEEE Electron Device Lett., Vol. 11, pp. 561-563, 1990.
[15] M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi, and J. M. Tsai, “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” J. Appl. Phys., Vol. 94, pp. 1753-1757, 2003.
[16] S. K. Zhang, W. B. Wang, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, R. R. Alfano, “Backilluminated ultraviolet photodetector based on GaN/AlGaN multiple quantum wells,” Appl. Phys. Lett., Vol. 81, pp. 4628-4630, 2002.
[17] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai and J. M. Tsai, “GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” IEEE Sens. J., Vol. 2, pp. 366-371, 2002.
[18] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and H. Luth, “Electrical behavior of the InP/InGaAs based MSM 2DEG diode,” Solide-State Electron., Vol. 41, pp. 25, 1997.
[19] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, 1997.
[20] T. U. Kampen and W. Monch, “Barrier heights of GaN Schottky contacts,” Appl. Surf. Sci., Vol. 117/118, pp. 388-393, 1997.
[21] A. Hierro, D. Kwon, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, “Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., Vol. 76, pp. 3064-3066, 2000.
[22] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., Vol. 79, pp. 1417-1419, 2001.
[23] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, and M. A. Khan, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors,” Appl. Phys. Lett., Vol. 77, pp. 863-865, 2000.
[24] Y. Z. Chiou, “GaN ultraviolet photodetectors with transparent titanium tungsten and tungsten electrodes,” J. Electrochem. Soc., Vol. 152, pp. G639-G642, 2005.
[25] E. Monroy, F. Calle, J. L. Pau, E. Munoz, and F. Omnes, “Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,” Electron. Lett., Vol. 36, pp. 2096-2098, 2000.
[26] J. Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz, V. Harle, O. Briot, B. Gil, and R. L. Aulombard, “Influence of surface defects on the characteristics of GaN Schottky diodes,” in Proc. Mater. Res. Soc. Symp., Vol. 449, p. 1085, 1996.
[27] C. R. Lee, “Electronic characteristics of Au/AlxGa1-xN structures grown with various values,” J. Cryst. Growth, Vol. 220, pp. 62-67, 2000.
[28] J. K. Kim, H. W. Jang, C. M. Jeon, and J. L. Lee, “GaN metal-semiconductor-metal ultraviolet photodetector with IrO2 Schottky contact,” Appl. Phys. Lett., Vol. 81, pp. 4655-4657, 2002.
[29] H. W. Jang and J. L. Lee, “Transparent Ohmic contacts of oxidized Ru and Ir on p-type GaN,” J. Appl. Phys., Vol. 93, pp. 5416-, 2003.
Chapter 4
[1] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 7433-7473, 1996.
[2] A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee and C. C. Chuo, “Comparison of GaN p-i-n and Schottky rectifier performance,” IEEE Trans. Electron. Dev., Vol. 48, pp. 407-411, 2001.
[3] H. C. Casey Jr., G. G. Fountain, R. G. Alley, B. P. Keller and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., Vol. 68, pp. 1850-1852, 1996.
[4] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., Vol. 77, pp. 3788-3790, 2000.
[5] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., Vol. 82, pp. 4304-4306, 2003.
[6] T. Hashizume, E. Alekseev, D. Pavlidis, K. S. Boutros and J. Redwing, “Capacitance-voltage characterization of AlN/GaN metal-insulator-semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 88, pp. 1983-1986, 2000.
[7] S. Imanaga, F. Nakamura and H. Kawai, “Current-voltage characteristics of AlN/GaN heterostructure metal insulator semiconductor diode,” Jpn. J. Appl. Phys., Vol. 40, pp. 1194-1198, 2001.
[8] G. C. Yi, and B. W. Wessels, “Deep level defects in n-type GaN compensated with Mg,” Appl. Phys. Lett., Vol. 68, pp. 3769-3771, 1996.
[9] K. Saarinen, J. Nissila, P. Hautojarvi, J. Likonen, T. Suski, I. Grzegory, B. Lucznik, and S. Porowski, “The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals,” Appl. Phys. Lett., Vol. 75, pp. 2441-2443, 1999.
[10] S. Nakamura and G. Fasol, The Blue Laser Diode, 1st ed. Berlin, Germany: Springer-Verlag, 1997.
[11] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and ITO metal contacts,” IEEE Electron. Dev. Lett., Vol. 24, pp. 212-214, 2003
[12] M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, S. J. Chang, C. J. Kao, C. J. Tun, M. G. Chen, W. H. Chang, G. C. Chi and J. M. Tsai, “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” J. Appl. Phys., Vol. 94, pp. 1753-1757, 2003.
[13] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars, and J. S. Spect, “Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor desposition,” Appl. Phys. Lett., Vol. 72, pp. 2247-2249, 1998.
[14] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films,” Appl. Phys. Lett., 74, 2367-2369, 1999.
[15] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes, ” Appl. Phys. Lett., Vol. 78, pp. 1685-1687, 2001.
[16] E. H. Rhoderick, and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, U.S.A.: Oxford University Press, 1988.
[17] A. Zeitouny, M. Eizenberg, S. J. Pearton, and F. Ren, “Contact resistivity and transport mechanisms in W contacts to p- and n-GaN,” J. Appl. Phys., Vol. 88, pp. 2048-2053, 2000.
[18] A. Hierro, D. Kwon, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, “Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., Vol. 76, pp. 3064-3066, 2000.
[19] S. K. Cheung, and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Appl. Phys. Lett., Vol. 49, pp. 85-87, 1986.
[20] V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I-V methods,” J. Appl. Phys., Vol. 76, pp. 7973-7984, 1994.
[21] N. Nagai, Q. S. Zhu, Y. Kawaguchi, K. Hiramatsu, and N. Sawaki, “Hole trap levels in Mg-doped GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 73, pp. 2024-2026, 1998.
[22] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., Vol. 79, pp. 1417-1419, 2001.
[23] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys. Lett., Vol. 40, pp. L505-L507, 2001.
[24] M. Klingenstein, J. Kuhl, J. Rosenzweig, C. Moglestue, A. Hulsmann, Jo. Schneider, and K. Kohler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid State Electron., Vol. 37, pp. 333-340, 1994.
[25] J. H. Burroughes, “H-MESFET Compatible GaAs/AlGaAs MSM Photodetector,” IEEE Photon. Technol. Lett., Vol. 3, pp. 660-662, 1991.
[26] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, 1984.
[27] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter, Vol. 13, pp. 7115-7137, 2001.
[28] C. Rivera, J. L. Pau, F. B. Naranjo, and E. Munoz, “Novel photodetectors based on InGaN/GaN multiple quantum wells,” Phys. Stat. Sol. (a), Vol. 201, pp. 2658-2662, 2004.
[29] C. Rivera, J. L. Pau, A. Navarro, E. Munoz, “Photoresponse of (In,Ga)N-GaN Multiple-Quantum-Well Structures in the Visible and UVA Ranges,” IEEE J. Quantum Electron., Vol. 42, pp. 51-58, 2006.
[30] J. P. R. David, Y. H. Chen, R. Grey, G. Hill, P. N. Robson, P. Kightley, “Effect of misfit dislocations on leakage currents in strained multiquantum well structures,” Appl. Phys. Lett., Vol. 67, pp. 906-908, 1995.
[31] P. C. Chang, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, C. H. Liu, H. Hung, S. M. Wang, “InGaN/GaN multi-quantum well metal-insulator semiconductor photodtectors with photo-CVD SiO2 layers,” Jpn. J. Appl. Phys., Vol. 43, pp. 2008-2010, 2004.
[32] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-Doping on the Characteristics of InGaN-GaN Multiple Quantum-Well Blue Light Emitting Diodes,” IEEE J. Quantum Electron., Vol. 38, pp. 446-450, 2002.
[33] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN Multiquantum Well Light-Emitting Diodes,” IEEE J. Sel. Top. Quantum Electron., Vol. 8, pp. 744-748, 2002.
[34] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eting, R. F. Dupuis, and J. C. Campbell, “Current transport mechanism in GaN-based MSM photodetectors,” Appl. Phys. Lett., Vol. 72, pp. 542-544, 1998.
[35] E. Monroy, F. Calle, E. Munoz, F. Omnes, B. Beaumont, and P. Gibart, “Visible-Blindness in Photoconductive and Photovoltaic AlGaN Ultraviolet Detectors,” J. Electron. Mater., Vol. 28, pp. 240-245, 1999.
[36] Y. Z. Chiou, “GaN ultraviolet photodetectors with transparent titanium tungsten and tungsten electrodes,” J. Electrochem. Soc., Vol. 152, pp. G639-G642, 2005.
[37] E. Monroy, F. Calle, J. L. Pau, E. Munoz, and F. Omnes, “Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,” Electron. Lett., Vol. 36, pp. 2096-2098, 2000.
Chapter 5
[1] A. S. Baker, and M. I. Ilegems, “Infrared Lattice Vibrations and Free-Electron Dispersion in GaN,” Phys. Rev. B, Vol. 7, pp. 743-750, 1973.
[2] Handbook of Thin Film Devices, Volume 1: Heterostructures for High performance Devices, M. H. Francombe, Ed., Academic, San Diego, CA, 2000, pp. 299.
[3] S. Mizuno, Y. Ohno, S. Kishimoto, and T. Mizutani, “Large gate leakage current in AlGaN/GaN high electron mobility transistors,” Jpn. J. Appl. Phys., Vol. 41, pp. 5125-5126, 2002.
[4] P. A. Grudowski, A. L. Holmes, C. J. Eiting, and R. D. Dupuis, “The effect of substrate misorientation on the photoluminescence properties of GaN grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 69, pp. 3626-3628, 1996.
[5] P. A. Grudowski, A. L. Holmes, C. J. Eiting, R. D. Dupuis, “The effect of substrate misorientation on the optical, structural, and electrical properties of GaN grown on sapphire by MOCVD,” J. Electron. Mater., Vol. 26, pp. 257-261, 2003.
[6] S. W. Kim, H. Aida, T. Suzuki, “The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films,” Phys. Stat. Sol. (c), Vol. 1, pp. 2483-2486, 2004.
[7] J. C. Lin, Y. K. Su, W. H. Lan, T. M. Kuan, W. R. Chen, Y. C. Cheng, W. J. Lin, Y. C. Tzeng, H. Y. Shin, “The influence of vicinal sapphire substrate on GaN epilayers and LED structures grown by metalorganic chemical vapor deposition,” Mater. Sci. Eng. B, Vol. 128, pp. 107-110,2006.
[8] J. C. Lin, Y. K. Su, S. J. Chang, W. R. Chen, R. Y. Chen, Y. C. Cheng, W. J. Lin, “Activation energy of n-GaN epitaxial layers grown on vicinal-cut sapphire substrates,” J. Cryst. Growth, Vol. 285, pp. 481-485, 2005.
[9] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 71, pp. 2794-2796, 1997.
[10] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, pp. 3222-3233, 1999.
[11] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, Vol. 56, pp. R10024-R10027, 1997.
[12] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., Vol. 71, pp. 2794-2796, 1997.
[13] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., Vol. 54, pp. 437-672, 1982.
[14] E. S. Hellman, “The Polarity of GaN: a Critical Review,” MRS Int. J. Nitride Semicond. Res., Vol. 3, No. 11, 1998.
[15] S. J. Chang, S. C. Wei, Y. K. Su, C. H. Liu, S. C. Chen, U. H. Liaw, T. Y. Tsai, T. H. Hsu, “AlGaN/GaN modulation-doped field-effect transistors with an Mg-doped carrier confinement layer,” Jpn. J. Appl. Phys., Vol. 42, pp. 3316-3319, 2003.
[16] T. M. Kuan, S. J. Chang, Y. K. Su, J. C. Lin, S. C. Wei, C. K. Wang, C. I. Huang, W. H. Lan, J. A. Bardwell, H. Tang, W. J. Lin, Y. T. Cherng, “High-performance GaN/InGaN heterostructure FETs on Mg-doped GaN current blocking layers,” J. Cryst. Growth, Vol. 272, pp. 300-304, 2004.
[17] C. R. Lee, “Electronic characteristics of Au/AlxGa1-xN structures grown with various x values,” J. Cryst. Growth, Vol 220, pp. 62-67, 2000.
[18] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., Vol. 68, pp. 643-645, 1996
[19] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, D. H. Lim, and A. Yoshikawa, “Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,” Appl. Phys. Lett., Vol. 77, pp. 2557-2559, 2000.
[20] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., Vol. 86, pp. 043108, 2005.
[21] X. Q. Shen, H. Okumura, and H. Matsuhata, “Studies of the annihilation mechanism of threading dislocation in AlN films grown on vicinal sapphire (0001) substrates using transmission electron microscopy,” Appl. Phys. Lett., Art. No. 101910, 2005.
[22] X. Q. Shen, H. Matsuhata, and H. Okumura, “Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates,” Appl. Phys. Lett., Art. No. 021912, 2005.
[23] X. Q. Shen, M. Shimizu, T. Yamamoto, Y. Honda, and H. Okumura, “Characterizations of GaN films and GaN/AlN super-lattice structures grown on vicinal sapphire (0001) substrates by RF-MBE,” J. Cryst. Growth, Vol. 278, pp. 378-382, 2005.
[24] S. Arulkumaran, M. Sakai, T. Egawa, H. Ishikawa, T. Jimbo, T. Shibata, K. Asai, S. Sumiya, Y. Kuraoka, M. Tanaka, and O. Oda, “Improved dc characteristics of AlGaN/GaN high-electron-mobility transistors on AlN/sapphire templates,” Appl. Phys. Lett., Vol. 81, pp. 1131-1133, 2002.
[25] L. Hsu, and W. Walukiewicz, “Electron mobility in AlxGa1-xN/GaN heterostructures,” Phys. Rev. B, Vol. 56, pp. 1520-1528, 1997.
[26] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani, and H. Morkoc, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy,” Solid-State Electron., Vol. 42, pp. 839-847, 1998.
[27] S. Karmalkar, D. M. Sathaiya, and M. S. Shur, “Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., Vol. 82, pp. 3976-3978, 2003.
[28] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons, 1981.
[29] M. A. Khan, J. W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M. S. Shur, B. Beaumont, M. Teisseire and G. Neu, “GaN-AlGaN heterostructure field-effect transistors over bulk GaN substrates,” Appl. Phys. Lett., Vol. 76, pp. 3807-3809, 2000.
[30] Z. H. Feng, S. J. cai, K. J. Chen, K. M. Lau, “Enhanced-performance of AlGaN-GaN HEMTs grown on grooved sapphire substrates,” IEEE Electron Device Lett., Vol. 26, pp. 870-872, 2005
[31] R. Vetury, H. Marchand, G. Parish, P. T. Fini, J. P. Ibbetson, S. Keller, J. S. Speck, S. P. DenBaars, U. K. Mishra, “First Demonstration of AlGaN/GaN Heterostructure Field Effect Transistor on GaN grown by lateral epitaxial overgrowth (LEO),” Institute of Phys. Conf. Ser., Vol. 162, pp. 177-183, 1999.
[32] T. Nanjo, N. Miura, T. Oishi, M. Suita, Y. Abe, T. Ozeki, S. Nakatsuka, A. Inoue, T. Ishikawa, Y. Matsuda, H. Ishikawa, T. Egawa, “Improvement of DC and RF characteristics of AlGaN/GaN high electron mobility transistors by thermally annealed Ni/Pt/Au Schottky gate,” Jpn. J. Appl. Phys., Vol. 43, pp. 1925-1929, 2004.
[33] K. Shiojima, T. Makimura, T. Suemitsu, and N. Shigekawa, “Effect of Epitaxial Layer Crystal Quality on DC and RF Characteristics of AlGaN/GaN Short-Gate High-Electron-Mobility Transistors on Sapphire Substrates,” Jpn. J. Appl. Phys., Vol. 44, pp. 8435-8440, 2005
[34] H. Okita, K. Kaifu, J. Mita, T. Yamada, Y. Sano, H. Ishikawa, T. Egawa, T. Jimbo, “High transconductance AlGaN/GaN-HEMT with recessed gate on sapphire substrate,” Phys. Status Solidi A-Appl. Mat., Vol. 200, pp. 187-190, 2003.
[35] Y. Yamashita, A. Endoh, K. Ikeda, K. Hikosaka, T. Mimura, M. Higashiwaki, T. Matsui, S. Hiyamizu, “Effect of thermal annealing on 120-nm-T-shaped-Ti/Pt/Au-gate AlGaN/GaN high electron mobility transistors,” J. Vac. Sci. Technol. B, Vol. 23, pp. 895-899, 2005.