| 研究生: |
劉詠芳 Liu, Yung-Fang |
|---|---|
| 論文名稱: |
有機硫化物及半導體高分子在Au(111)表面自組裝行為及其電性之探討 The Studies of Self-assembly Behavior and Electronic Properties of Organosulfurs and Semiconductor Polymers on Au(111) |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 自組裝單分子膜 、掃描式電子穿隧顯微鏡 、表面增強紅外線光譜 |
| 外文關鍵詞: | Self-assembled monolayer, STM, SEIRAS |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自組裝單分子膜(Self-Assembled Monolayer, SAM)於基板表面的修飾可控制鍍膜的成長行為及薄膜的特性,而薄膜成長模式及薄膜結構的控制是決定薄膜材料特性的重要因素,且在金屬鍍膜機制中,鍍膜與基板間的界面性質往往是決定薄膜結構的關鍵因素。本實驗利用掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM)與表面增強紅外線光譜(Surface-Enhanced Infrared Spectroscopy, SEIRAS)結合電化學系統,即時觀測含磺酸根之二烷基硫化物(3,3-Thiobis(1-propanesulfonic acid, sodium salt), TBPS)在金(111)電極表面的自組裝行為以及其作為電化學鍍銅添加劑時的銅薄膜成長的機制。與一般二烷基硫化物相同的是,TBPS以平躺的方式吸附電極表面,形成低覆蓋率的單分子膜,然而與金原子產生化學鍵結而形成規則結構的現象卻是與有機硫醇分子較為相似。實驗結果顯示,TBPS分子在金(111)表面表現出一複雜、受電位影響的自組裝行為,電極電位改變了分子-分子、分子-載體間的作用力。在鍍銅行為的影響方面,本研究發現在TBPS分子存在的環境下,有效地加速銅的沉積於金表面,且在過程中分子轉置於鍍膜之上。銅overpotential deposition (OPD)的沉積型態則是形成與未含TBPS分子的3D成長有所不同之光滑、低粗糙度的銅膜。
由於有機半導體電子元件的表現受到有機半導體分子膜排列及導電度的影響,然而有機半導體分子常因與金屬表面間的強吸引力而無法形成規則排列,因此本實驗亦將在小分子的自組裝行為的研究延伸至有機半導體高分子的自組裝薄膜,期望能夠製備出具有大範圍高規則度的有機半導體薄膜於金屬表面。我們成功地利用修飾鹵素原子於金(111)表面的方法,製備出具有大範圍規則結構的poly(3-hexylthiophene) (P3HT)分子膜,且利用bottom-up的方式組裝C60於P3HT分子膜之上,形成具有良好導電度、雙連續面單分子膜的奈米結構。在未經修飾的金(111)表面上,P3HT僅能形成彎曲、不規則的吸附型態,為改善此問題,我們預先於金(111)表面修飾溴/碘原子層,降低P3HT與載體的作用力後,使高分子鏈能夠形成規則排列。並藉由調控電極電位將碘原子層脫附,脫附同時由P3HT得到電子進行p-dope,使P3HT單分子膜除具有高規則度外亦有較高的導電度。將C60分子分別組裝於P3HT與p-dope P3HT修飾後的金(111)表面,因p-dope P3HT與C60有較強的donor-acceptor作用力,可得到穩定性、導電度佳的混合分子膜。STS的研究結果顯示碘原子層脫附所引起的p-dope現象會使P3HT單分子膜及混合膜的Fermi level偏移~0.1 eV。本研究提供一簡易、快速的方法來製備具有高規則度奈米結構之有機半導體分子膜。
The interfacial properties between the substrate and the deposited film are the major determinants of film construction. By forming a self-assembled monolayer (SAM) on a substrate surface, one can control the film characteristics and the metal-deposition process. This study reveals the self-assembly process and the effects on metal-deposition process of 3,3-Thiobis(1-propanesulfonic acid, sodium salt) (TBPS) via scanning tunneling microscopy (STM) and surface-enhanced infrared spectroscopy (SEIRAS). TBPS exhibits an adsorption behavior typically observed for dialkyl sulfides including intact adsorption and low coverage phases with molecules predominantly lying flat on the surface. On the other hand, an untypical chemical bond and well-ordered domains were determined which resemble the characteristics of alkenethiol SAMs. In situ STM studies in TBPS-containing electrolyte reveal a very complex, potential-dependent adsorption behavior. This behavior is attributed to the influence of the electrode potential on intermolecular and molecule-substrate interactions as well as on the TBPS coverage. The results also shows that Cu growth on Au(111) - which is known to be strongly kinetically hindered in additive-free, aqueous perchloric acid solutions - proceeds significantly faster in the presence of TBPS. The TBPS molecules either “float” on top of the growing film. Cu growth in the overpotential deposition (OPD) regime results in a smooth Cu film with low surface roughness, in contrast to defect-mediated 3D island growth in additive-free electrolytes.
The performance of organic semiconductor devices depends to a great extent on the arrangement and conductivity of molecules adsorbed on metal substrate surfaces. A central challenge in the creation of well-ordered, supramolecular nanostructures are strong interactions between adsorbent and metal which often lead to poorly ordered adlayer phases. It, therefore, is very important to develop new techniques to produce organic semiconductor films with desired properties. We could succeed to fabricate well-ordered, supramolecular C60/poly(3-hexylthiophene) (P3HT) nanostructures on I-modified Au(111) surfaces. A bottom-up strategy to halide-pretreated single-crystal electrodes in the solution phase has been used because it is a simple and effective approach to fabricate defect-free, nanostructured, and bicontinuous composite-monolayers with exceptional conductivity. The p-type semiconductive polymer, P3HT, has widely been studied, but it has a problem to form randomly oriented and/or curvy-wire morphology on a bare Au(111) electrode. To overcome these problems, we have used iodine-modified Au(111) substrates to let the polymer chains stack and fold into well-organized arrays of two-dimensional, linear architectures with large, ordered domains. At sufficiently negative electrode potentials, electrons transfer from P3HT to iodine leading to iodine desorption and p-doping of the P3HT adlayer. As a consequence, the Fermi level shifts ~0.1 eV toward the HOMO position. This p-doped P3HT monolayer exhibits strong donor-acceptor interactions with n-type materials, like C60. Therefore, a stable C60/P3HT supramolecular nanostructure could be fabricated on Au(111) surfaces. It exhibits high conductivity which can resist a comparatively large potential change from 1 to 0 V. In contrast to previous studies, the nanostructures produced by the present method have a high degree of ordering. Furthermore, the preparation from the solution phase is cost-effective, easy to perform and fast compared to the UHV technique commonly employed in the literature.
1. W. C. Bigelow, D. L. Pickett, W. A. Zisman, "Oleophobic Monolayers: I. Films Adsorbed From Solution in Non-polar Liquids," J. Colloid Sci. 1946, 1, 513-538.
2. R. G. Nuzzo, D. L. Allara, "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces," J. Am. Chem. Soc. 1983, 105, 4481-4483.
3. A. Ulman, "Formation and Structure of Self-assembled Monolayers," Chem. Rev. 1996, 96, 1533-1554.
4. H. Sellers, A. Ulman, Y. Shnidman, J. E. Eilers, "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-assembled Monolayers," J. Am. Chem. Soc. 1993, 115, 9389-9401.
5. G. Yang, G. Liu, "New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy," J. Phys. Chem. B 2003, 107, 8746-8759.
6. H.A. Biebuyck, G.M. Whitesides, "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal," Langmuir 1993, 9, 1766-1770.
7. J. Zhang, A. Bilic, J.R. Remers, N.S. Hush, J. Ulstrup, “Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111),” J. Phys. Chem. B 2005, 109, 15355-15367.
8. J. Zhang, Q. Chi, J. Ulstrup, "Assembly Dynamics and Detailed Structure of 1-Propanethiol Monolayers on Au(111) Surfaces Observed Real Time by in situ STM," Langmuir 2006, 22, 6203-6213.
9. Y.F. Liu, Y.L. Lee, “Adsorption Characteristics of OH-terminated Alkanethiol and Arenethiol on Au(111) Surfaces,” Nanoscale 2012, 4, 2093-2100.
10. L.J. Wan, M. Terashima, H. Noda, M. Osawa, “Molecular Orientation and Ordered Structure of Benzenethiol Adsorbed on Gold(111) ,” J. Phys. Chem. B 2000, 104, 3563-3569.
11. J. Zhang, Q. Chi, J.U. Nielsen, E.P. Friis, J.E.T. Andersen, J. Ulstrup, “Two-dimensional Cysteine and Cystine Cluster Networks on Au(111) Disclosed by Voltammetry and in situ Scanning Tunneling Microscopy,” Langmuir 2000, 16, 7229-7237.
12. Z.Y. Jian, T.Y. Chang, Y.C. Yang, W.P. Dow, S.L. Yau, Y.L. Lee, “3-Mercapto-1-propanesulfonic Acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au(111): in situ Scanning Tunneling Microscopy and Electrochemical Studies,” Langmuir 2009, 25, 179-184.
13. E.B. Thoughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, M.D. Porter, "Monolayer Films Prepared by the Spontaneous Self-assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups," Langmuir 1988, 4, 365-385.
14. C.J. Zhong, M.D. Porter, "Evidence for Carbon-sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-based Monolayers at Gold," J. Am. Chem. Soc. 1994, 116, 11616-11617.
15. M.W.J. Beulen, B.H. Huisman, P.A. van der Heijden, F.C.J.M. van Veggel, M.G. Simons, Ed M.E.F. Biemond, P.J. de Lange, D.N. Reinhoudt, "Evidence for Nondestructive Adsorption of Dialkyl Sulfides on Gold," Langmuir 1996, 12, 6170-6172.
16. C.J. Zhong, R.C. Brush, J. Anderegg, M.D. Porter, "Organosulfur Monolayers at Gold Surfaces: Reexamination of the Case for Sulfide Adsorption and Implications to the Formation of Monolayers from Thiols and Disulfides," Langmuir 1999, 15, 518-525.
17. H. Takiguchi, K. Sato, "Delicate Surface Reaction of Dialkyl Sulfide Self-assembled Monolayers on Au(111)," Langmuir 2000, 16, 1703-1710.
18. B. Hagenhoff, A. Benninghoven, J. Spinke, M. Liley, W. Knoll, "Time-of-flight Secondary Ion Mass Spectrometry Investigations of Self-assembled Monolayers of Organic Thiols, Sulfides, and Disulfides on Gold Surfaces," Langmuir 1993, 9, 1622-1624.
19. J. Noh, H.S. Kato, M. Kawai, M. Hara, "Surface and Adsorption Structures of Dialkyl Sulfide Sf-Assembled Monolayers on Au(111)," J. Phys. Chem. B 2002, 106, 13268-13272.
20. A.W. Czanderna, D.E. King, D. Spaulding, “Metal Overlayers on Organic Functional Groups of Self‐organized Molecular Assemblies. 1. X‐ray Photoelectron Spectroscopy of Interactions of Cu/COOH on 11‐Mercaptoundecanoic Acid,” J. Vac. Sci. Technol. A 1991, 9, 2607-2613.
21. M.J. Tarlov, “Silver Metalization of Octadecanethiol Monolayers Self- assembled on Gold,” Langmuir 1992, 8, 80-89.
22. D.R. Jung, A.W. Czanderna, “Chemical and Physical Interactions at Metal/ Self-assembled Organic Monolayer Interfaces”, Crit. Rev. Solid State Mater. Sci. 1994, 19, 1-54.
23. (a) G.C. Herdt, D.E. King, A.W. Czanderna, “Penetration of Deposited Au, Cu, And Ag Overlayers through Alkanethiol Self-assembled Monolayers on Gold or Silver”, Z. Phys. Chem. 1997, 202, 163-196. (b) G.C. Herdt, D.R. Jung, A.W. Czanderna, “Weak Interactions between Deposited Metal Overlayers and Organic Functional Groups of Self-assembled Monolayers”, Prog. Surf. Sci. 1995, 50, 103-129.
24. J.A.M. Sondag-Huethorst, L.G.J. Fokkink, “Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir 1995, 11, 2237-2241.
25. J.O. Dukovic, In Advance in Electrochemical Science and Engineering, Vol. 3 (Eds.: H. Gerischer, C. W. Tobias), Wiley-VCH, Weinheim, 1994, pp. 117-161.
26. (a) L. Sun, R.M. Crooks, “Imaging of Defects Contained within n-Alkylthiol Monolayers by Combination of Underpotential Deposition and Scanning Tunneling Microscopy: Kinetics of Self-assembly” J. Electrochem. Soc. 1991, 138, L23-L25. (b) P. Taephaisitphongse, Y. Cao, A.C. West, “Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, J. Electrochem. Soc. 2001, 148, C492-C497.
27. M. A. Schneeweiss, D.M Kolb, “The Initial Stages of Copper Deposition on Bare and Chemically Modified Gold Electrodes”, Phys. Status Solidi A 1999, 173, 51-71.
28. M. Petri, D. M. Kolb, U. Memmert, H. Meyer, “Adsorption of Mercaptopropionic Acid onto Au(111): Part II. Effect on Copper Electrodeposition,” Electrochimica Acta 2003, 49, 183-189.
29. C.M. Whelan, M.R. Smyth, C.J. Barnes, “The Influence of Heterocyclic Thiols on the Electrodeposition of Cu on Au(111),” J. Electroanal. Chem. 1998, 441, 109-129.
30. M. Nishizawa, T. Sunagawa, H. Yoneyama, “Underpotential Deposition of Copper on Gold Electrodes Through Self-assembled Monolayers of Propanethiol,” Langmuir 1997, 13, 5215-5217.
31. (a) S.E. Gilvert, O. Cavalleri, K. Kern, “Electrodeposition of Cu Nanoparticles on Decanethiol-Covered Au(111) Surfaces: An in situ STM Investigation,” J. Phys. Chem. 1996, 100, 12123-12130. (b) O. Cavalleri, S.E.Gilvert, K. Kern, “Growth Manipulation in Electrodeposition with Self-assembled Monolayers,” Chem. Phys. Lett. 1997, 269, 479-484. (c) O. Cavalleri, A.M. Bittner, H. Kind, K. Kern, “Copper Electrodeposition on Alkanethiolate Covered Gold Electrodes,” Z. Phys. Chem. 1999, 208, 107-136.
32. (a) G. K. Jennings, P. E. Laibinis, “Underpotentially Deposited Metal Layers of Silver Provide Enhanced Stability to Self-Assembled Alkanethiol Monolayers on Gold,” Langmuir 1996, 12, 6173-6175. (b) G. K. Jennings, P. E. Laibinis, “Self-Assembled n-Alkanethiolate Monolayers on Underpotentially Deposited Adlayers of Silver and Copper on Gold,” J. Am. Chem. Soc. 1997, 119, 5208-5214.
33. H. Shirakawa, E. J. Louis , A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun. 1977, 578-580.
34. (a) R. J. Wilson, G. Meijer, D. S. Bethune, R. D. Johnson, D. D. Chambliss, M. S. de Vries, H. E. Hunziker, H. R. Wendt, “Imaging C60 Clusters on A Surface Using A Scanning Tunnelling Microscope,” Nature 1990, 348, 621-622. (b) J. L. Wragg, J. E. Chamberlain, H. W. White, W. Krätschmer & Donald R. Huffman, “Scanning Tunnelling Microscopy of Solid C60/C70,” Nature 1990, 348, 623-624
35. E. J. Snyder, M.S. Anderson, W.M. Tong, R.S. Williams, S.J. Anz, M.M. Alvarez, Y. Rubin, F.N. Diederich, R.L. Whetten, “Atomic Force Microscope Studies of Fullerene Films: Highly Stable C60 fcc (311) Free Surfaces,” Science 1991, 253, 171-173.
36. E.I. Altman, R.J. Colton, “The Interaction of C60 with Noble Metal Surfaces,” Surface Science 1993, 295, 13-33.
37. (a) Y.Z. Li, J.C. Patrin, M. Chander, J.H. Weaver, L.P.F. Chibante, R.E. Smalley, “Ordered Overlayers of C60 on GaAs(110) Studied with Scanning Tunneling Microscopy,” Science 1991, 252, 547-548. (b) Y.Z. Li, M. Chander, J.C. Patrin, J.H. Weaver, L.P.F. Chibante, R.E. Smalley, “Order and Disorder in C60 and KxC60 Multilayers: Direct Imaging with Scanning Tunneling Microscopy,” Science 1991 253, 429-433.
38. S. Uemura, A. Ohira, T. Ishizaki, M. Sakata, M. Kunitake, I. Taniguchi, C. Hirayama, “In situ STM Visualization of Fullerene Epitaxial Adlayers on Au(111) Surfaces Prepared by the Transfer of Langmuir Films,” Chem. Lett. 1999, 28, 279-280.
39. A. Marchenko, J. Cousty, “C60 Self-organization at the Interface between a Liquid C60 Solution and a Au(111) Surface,” Surf. Sci. 2002, 513, 233-237.
40. S. Uemura, P. Samorí, M. Kunitake, C. Hirayama, J. P. Rabe, “Crystalline C60 Monolayers at the Solid-organic Solution Interface,” J. Mater. Chem. 2002, 12, 3366-3367.
41. (a) S. Yoshimoto, R. Narita, E. Tsutsumi, M. Matsumoto, K. Itaya, “Adlayers of Fullerene Monomer and [2 + 2]-Type Dimer on Au(111) in Aqueous Solution Studied by in situ Scanning Tunneling Microscopy,” Langmuir 2002, 18, 8518-8522. (b) Y.C. Yang, C.Y. Chen, Y.L. Lee, “Highly Ordered C60 Monolayer Self-assembled by Using an Iodine Template on an Au(111) Surface in Solution,” Langmuir 2008, 24, 11611-11615.
42. F. Sedona, M.D. Marino, M. Sambi, T. Carofiglio, E. Lubian, M. Casarin, E. Tondello, “Fullerene/Porphyrin Multicomponent Nanostructures on Ag(110): From Supramolecular Self-assembly to Extended Copolymers” ACS Nano 2010, 4, 5147-5154.
43. Y. Wakayama, D.G. de Oteyza, J.M. Garcia-Lastra, D.J. Mowbray, “Solid-state Reactions in Binary Molecular Assemblies of F16CuPc and Pentacene,” ACS Nano 2011, 5, 581-589.
44. G.B. Pan, J.M. Liu, H.M. Zhang, L.J.Wan,Q.Y. Zheng, C.L. Bai, “Configurations of a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(111) Surface,” Angew. Chem. Int. Ed. 2003, 42, 2747-2751.
45. Y.C. Yang, C.H. Chang, Y.L. Lee, “Complexation of Fullerenes on a Pentacene-modified Au(111)Surface,” Chem. Mater. 2007, 19, 6126-6130.
46. R.D. McCullough, R.D. Lowe, “Enhanced Electrical Conductivity in Regioselectively Synthesized Poly(3-alkylthiophenes)” J. Chem. Soc., Chem. Commun. 1992, 70-72.
47. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, ”Two-dimensional Charge Transport in Self-organized, High-mobility Conjugated Polymers,” Nature 1999, 401, 685-688.
48. (a) H.E. Katz, Z. Bao, S.L. Gilat, “Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors,” Acc. Chem. Res. 2001, 34, 359-369. (b) X.M. Jiang, C.P. An, R. Österbacka, Z.V. Vardeny, “FTIR Studies of Charged Photoexcitations in Regio-regular and Regio-random Poly(3-alkylthiophene) Flms,” Synth. Met. 2001, 116, 203-206.
49. R.D. McCullough, S. Tristram-Nagle, S.P. Williams, R.D. Lowe, and M. Jayaraman, “Self-orienting Head-to-tail Poly(3-alkylthiophenes): New Insights on Structure-Property Relationships in Conducting Polymers,” J. Am. Chem. Soc. 1993, 115, 4910-4911.
50. E. Mena-Osteritz, A. Meyer, B.M.W. Langeveld-Voss, R.A.J. Janssen, E. W. Meijer, P. Bäuerle, “Two-dimensional Crystals of Poly(3-alkyl-thiophene)s: Direct Visualization of Polymer Folds in Submolecular Resolution,” Angew. Chem. Int. Ed. 2000, 39, 2679-2684.
51. L. Scifo, M. Dubois, M. Brun, P. Rannou, S. Latil,A. Rubio, B. Grévin, ”Probing the Electronic Properties of Self-organized Poly(3-dodecylthiophene) Monolayers by Two-dimensional Scanning Tunneling Spectroscopy Imaging at the Single Chain Scale,” Nano Lett. 2006, 6, 1711-1718.
52. B. Grévin, P. Rannou, R. Payerne, A. Pron, J.-P. Travers, “Scanning Tunneling Microscopy Investigations of Self-organized Poly(3-hexylthiophene) Two- dimensional Polycrystals,” Adv. Mater. 2003, 15, 881-884.
53. P. Keg1, A. Lohani1, D. Fichou, Y.M. Lam, Y. Wu, B.S. Ong, S.G. Mhaisalkar, “Direct Observation of Alkyl Chain Interdigitation in Conjugated Polyquarterthiophene Self-organized on Graphite Surfaces,” Macromol. Rapid Commun. 2008, 29, 1197-1202.
54. K. Yamamoto, S. Ochiai, X. Wang, Y. Uchida, K. Kojima, A. Ohashi, T. Mizutani, “Evaluation of Molecular Orientation and Alignment of Poly(3-Hexylthiophene) on Au (111) and on Poly(4-Vinylphenol) Surfaces,” Thin Solid Films 2008, 516, 2695-2699.
55. (a) L.Y. Ou Yang, C. Chang, S. Liu, C. Wu, S.L. Yau, “Direct Visualization of an Aniline Admolecule and Its Electropolymerization on Au(111) with in Situ Scanning Tunneling Microscope,” J. Am. Chem. Soc. 2007, 129, 8076-8077. (b) Y. Lee, C. Chang, S.L. Yau, L. Fan, Y. Yang, L.Y. Ou Yang, K. Itaya, “Conformations of Polyaniline Molecules Adsorbed on Au(111) Probed by in situ STM and ex situ XPS and NEXAFS,” J. Am. Chem. Soc. 2009, 131, 6468-6474.
56. S.L. Yau, Y. Lee, C. Chang, W.P. Dow, “Revelation of the Spatial Structures And Polymerization of Aniline on Au(100) Electrode by in situ Scanning Tunnelling Microscopy,” Chem. Commun. 2009, 5737-5739.
57. H. Sakaguchi, H. Matsumura, H. Gong, “Electrochemical Epitaxial Polymerization of Single-molecular Wires,” Nature Materials 2004, 3, 551-557.
58. H. Sakaguchi, H. Matsumura, H. Gong, A.M. Abouelwafa, “Direct Visualization of the Formation of Single-molecule Conjugated Copolymers,” Science 2005, 310, 1002-1006.
59. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, New York, 2001.
60. J. Noh, F. Nakamura, J. Kim, H. Lee, M. Hara, “Structural Study of Dialkyl Sulfide Self-assembled Monolayers on Au(111),” Mol. Cryst. Liq. Cryst. 2002, 377, 165-168.
61. 林品均, “含磺酸根硫醚之自組裝單分子膜在Au(111)電極上的吸附及其對電化學鍍銅的效應,” 2010, Chapter 4.
62. D.O. Bellisario, A.D. Jewell, H.L. Tierney, A.E. Baber, E.C.H. Sykes, “Adsorption, Assembly, and Dynamics of Dibutyl Sulfide on Au{111},” J. Phys. Chem. C 2010, 114, 14583-14589.
63. I. Burgess, C.A. Jeffrey, X. Cai, G. Szymanski, Z. Galus, J. Lipkowski, “Direct Visualization of the Potential-controlled Transformation of Hemimicellar Aggregates of Dodecyl Sulfate into a Condensed Monolayer at the Au(111) Electrode Surface,” Langmuir 1999, 15, 2607-2616.
64. S. Xu, M. Chen, E. Cholewa, G. Szymanski, J. Lipkowski, “Electric-field- driven Surface Aggregation of a Model Zwitterionic Surfactant,” Langmuir 2007, 23, 6937-6946.
65. S. M. Rosendahl, B. R. Danger, J. P. Vivek, I. J. Burgess, “Surface Enhanced Infrared Absorption Spectroscopy Studies of DMAP Adsorption on Gold Surfaces,“ Langmuir 2009, 25, 2241-2247.
66. (a) J. Zhoh, G. Santambrogio, M. Bruemmer, D.T. Moore, L. Woeste, G. Meijer, D.M. Neumark, K.R. Asmis, “Infrared Spectroscopy of Hydrated Sulfate Dianions,” J. Chem. Phys. 2006, 125, 111102. (b) J.A. Altmann, N.C. Handy, “Evaluation of the Performance of the HCTH Exchange-correlation Functional Using a Benchmark of Sulfur Compounds,” Phys. Chem. Chem. Phys. 1999, 1, 5529-5536. (c) G. Menconi, D.J. Tozer, “Structures and Harmonic Frequencies of Sulfur-containing Molecules: Assessment of the 1/4 Exchange-correlation Functional,” Phys. Chem. Chem. Phys. 2003, 5, 2938-2941.
67. R. Jinnouchi, T. Hatanaka, Y. Morimoto, M. Osawa, “First Principles Study of Sulfuric Acid Anion Adsorption on a Pt(111) Electrode,” Phys. Chem. Chem. Phys. 2012, 14, 3208-3218.
68. R.G. Greenler, “Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques,” J. Chem. Phys. 1966, 44, 310-315.
69. M. Osawa, K. Ataka, K. Yoshii, Y. Nishikawa, “Surface-enhanced Infrared Spectroscopy: the Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles,” Appl. Spectrosc. 1993, 47, 1497-1502.
70. N. Garcia-Araez, P. Rodriguez, H. J. Bakker, M. T. M. Koper, “Effect of the Surface Structure of Gold Electrodes on the Coadsorption of Water and Anions,” J. Phys. Chem. C, 2012, 116, 4786-4792.
71. B.N.J. Persson, R. Ryberg, “Vibrational Interaction between Molecules Adsorbed on a Metal Surface: the Dipole-dipole Interaction,” Phys. Rev. B. 1981, 24, 6954.
72. M.L. Kottke, R.G. Greenler, H.G. Tompkins, “An Infrared Spectroscopic Study of Carbon Monoxide Adsorbed on Polycrystalline Gold Using the Reflection-absorption Technique,” Surf. Sci. 1972, 32, 231-243.
73. S. Pronkin, T. Wandlowski, “Time-resolved in situ ATR-SEIRAS Study of Adsorption and 2D Phase Formation of Uracil on Gold Electrodes,” J. Electroanal. Chem. 2003, 550-551, 131-147.
74. R. Nichols, Adsorption of Molecules at Electrodes (Eds.: J. Lipkowski, P.N. Ross), Wiley-VCH, New York, 1992, pp. 347.
75. J. Hotlos, O.M. Magnussen, R.J. Behm, ” Effect of Trace Amounts of Cl− in Cu Underpotential Deposition on Au(111) in Perchlorate Solutions: an in-situ Scanning Tunneling Microscopy Study,” Surf. Sci. 1995, 335, 129-144.
76. (a) S. Wu, Z. Shi, J. Lipkowski, A.P. Hitchcock, T. Tyliszczak, “Early Stages of Copper Electrocrystallization: Electrochemical and in situ X-ray Absorption Fine Structure Studies of Coadsorption of Copper and Chloride at the Au(111) Electrode Surface,” J. Phys. Chem. B 1997, 101, 10310-10322. (b) D. Krznaric and T. Goricnik, “Reactions of Copper on the Au(111) Surface in the Underpotential Deposition Region from Chloride Solutions,” Langmuir 2001, 17, 4347-4351.
77. X. Xing, D.A. Scherson, “Electrocatalytic Properties of Metal Adatoms in A Potential Range Negative to Nernstian Bulk Deposition,” J. Electroanal. Chem. 1989, 270, 273-284.
78. H. Uchida, M. Hiei, M. Watanabe, “Electrochemical Quartz Crystal Microbalance Study of Copper Adatoms on Au(111) Electrodes in Solutions of Perchloric and Sulfuric Acid,” J. Electroanal. Chem. 1998, 452, 97-106.
79. H. Hagenström, M.A. Schneeweiss, D.M. Kolb, “Modification of a Au(111) Electrode with Ethanethiol. 2. Copper Electrodeposition,” Langmuir 1999, 15, 7802-7809.
80. (a) J.A.M. Sondag-Huethorst, L.G.J. Fokkink, “Galvanic Copper Deposition on Thiol-modified Gold Electrodes,” Langmuir 1995, 11, 4823-4831. (b) E.D. Eliadis, R.G. Nuzzo, A.A. Gewirth, R.C. Alkire, “Copper Deposition in the Presence of Surface‐confined Additives,” J. Electrochem. Soc. 1997, 144, 96-105.
81. Y.F. Liu, K. Krug, P.C. Lin, Y.D. Chiu, W.P. Dow, S.L. Yau, Y.L. Lee, “In situ STM Study of Cu Electrodeposition on TBPS-modified Au(111) Electrodes,” J. Electrochem. Soc. 2012, 159, D84-D90.
82. R.J. Nichols, D.M. Kolb, R.J. Behm, “STM Observations of the Initial Stages of Copper Deposition on Gold Single-crystal Electrodes,” J. Electroanal. Chem. 1991, 313, 109-119.
83. R.J. Nichols, W. Beckmann, H. Meyer, N. Batina, D.M. Kolb, “An in situ Scanning Tunnelling Microscopy Study of Bulk Copper Deposition and The Influence of an Organic Additive,” J. Electroanal. Chem. 1992, 330, 381-394.
84. (a) M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, G. Dujardin, “Picometer-Scale Electronic Control of Molecular Dynamics Inside a Single Molecule,” Science 2005, 308, 1000-1003. (b) E.G. Emberly, G. Kirczenow, “The Smallest Molecular Switch,” Phys. Rev. Lett. 2003, 91, 188301.
85. (a) B.C. Stipe, M.A. Rezaei, W. Ho, “Coupling of Vibrational Excitation to the Rotational Motion of a Single Adsorbed Molecule,” Phys. Rev. Lett. 1998, 81, 1263-1266. (b) J.I. Pascual, N. Lorente, Z. Song, H. Conrad, H.P. Rust, “Selectivity in Vibrationally Mediated Single-molecule Chemistry,” Nature 2003, 423, 525-528.
86. (a) J.M. Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chem.Rev. 2002, 102, 1271-1308. (b) Y.H. Min, S.J. Jung, Y.S. Youn, D.H. Kim, S. Kim, “STM Tip Catalyzed Adsorption of Thiol Molecules at the Nanometer Scale” J. Am. Chem. Soc. 2010, 132, 9014-9019.
87. 簡正彥, “氯離子效應對於SPS與MPS在Au(111)電極上自組裝行為的影響及其電化學鍍銅的研究,” 2009, Chapter 4.
88. M. Kunitake, U. Akiba, N. Batina, K. Itaya, “Structures and Dynamic Formation Processes of Porphyrin Adlayers on Iodine-Modified Au(111) in Solution: In Situ STM Study,” Langmuir 1997, 13, 1607-1615.
89. X. Gao, M.J. Weaver, “Probing Redox-induced Molecular Transformations by Atomic-resolution Scanning Tunneling Microscopy: Iodide Adsorption and Electrooxidation on Gold(111) in Aqueous Solution,“ J. Am. Chem. Soc. 1992, 114, 8544-8551.
90. N. Batina , T. Yamada , K. Itaya, “Atomic Level Characterization of the Iodine-modified Au(111) Electrode Surface in Perchloric Acid Solution by in-Situ STM and ex-Situ LEED,” Langmuir 1995, 11, 4568-4576.
91. K. Yoshino, K. Nakao, M. Onoda, R. Sugimoto, “Instability of Conducting Polymer, Poly(3-alkylthiophene) Gel with Solvent, Temperature and Doping and Effect of Alkyl Chain Length,” Solid State Commun. 1989, 70, 609-613.
92. H. Ma, L.Y. Ou Yang, N. Pan, S.L. Yau, J. Jiang, K. Itaya, “Ordered Molecular Assemblies of Substituted Bis(phthalocyaninato) Rare Earth Complexes on Au(111): In situ Scanning Tunneling Microscopy and Electrochemical Studies,” Langmuir 2006, 22, 2105-2111.
93. A. Gesquiere, S. Feyter, F.C. De Schryver, F. Schoonbeek, J. van Esch, R.M. Kellogg, B.L. Feringa, “Supramolecular π-Stacked Assemblies of Bis(urea)-substituted Thiophene Derivatives and their Electronic Properties Probed with Scanning Tunneling Microscopy and Scanning Tunneling Spectroscopy,” Nano Lett. 2001, 1, 201-206.