| 研究生: |
謝鳳汝 Hsieh, Feng-Ru |
|---|---|
| 論文名稱: |
研究致病型大腸桿菌質體上可能的攝鐵基因 The potential iron-uptake genes on the plasmid of a pathogenic Escherichia coli |
| 指導教授: |
鄧景浩
Teng, Ching-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 大腸桿菌 、攝鐵基因 |
| 外文關鍵詞: | Escherichia coli, iron-uptake gene |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵是一種豐富的金屬元素並且對於大多數的生物體而言是重要營養素,細菌通常分泌嗜鐵素(siderophore)小分子螯合外界的鐵進行利用。致病菌的攝鐵能力在致病機轉中是重要的因子。因此,致病菌的攝鐵系統通常被認為是一種毒力因子。毒力質體對於致病性大腸桿菌的毒力與致病具有重要性。在新生兒腦膜炎病人分離出來的腸道外致病性大腸桿菌RS218中內含一個質體pRS218。藉由基因體資訊及蛋白質序列搜尋比對,我們發現有3組可能的攝鐵系統位於pRS218。
這3組基因中, fetMP基因組為二價鐵離子運輸系統。FetM為二價鐵離子通透酶,而FetP則具有三價鐵離子還原酶活性,可以促進FetM的運輸功能。eco42-43基因組為一個潛在的血紅素轉運系統,可能利用血紅素所攜帶的鐵離子作為鐵源。此基因組轉譯出的Eco42蛋白可能為第二類螯合酶,能夠螯合金屬離子,而Eco43蛋白則含有保守的外膜血紅素受體蛋白質基序FRAP / NPNL和一個保守的組氨酸殘基。eco60-63基因組已被預測參與攝鐵,實驗顯示這個基因組可能可以被Fur攝鐵調控蛋白所調控。此外Eco62蛋白演化樹親源分析顯示Eco62可能的功能為嗜鐵素受體/血紅素受體。
將菌株RS218分別剔除單套、雙套與三套基因組發現在含鐵及缺鐵條件培養下出現攝鐵系統功能有互補的機制。即突變株所喪失的功能可能藉由細菌中其他攝鐵基因所補償,因此並沒有造成生長缺陷。為避免此機制的影響,我們以非致病性K12大腸桿菌MG1655建構攝鐵能力缺失菌株,並利用這樣的菌株來分析pRS218上的這3組攝鐵相關基因的攝鐵功能。在建造攝鐵能力缺失的MG1655菌株時,我們曾對MG1655的多個攝鐵基因進行剔除,並發現只要對嗜鐵素生合成基因進行剔除就能使MG1655在在缺鐵環境中出現生長缺失。接續利用嗜鐵素生合成基因剔除菌株(IP10)來研究fetMP、eco42-43、eco60-63基因組的攝鐵功能。
我們將這些單套或多套可能攝鐵基因剔除的pRS218經接合生殖送入IP10,然後對於這些接合菌株的攝鐵能力進行分析。結果顯示,這3組基因中僅fetMP基因組可以在缺鐵環境補救攝鐵缺失菌株IP10的生長缺陷。我們也發現此質體會對IP10造成生長負擔。另外,fetMP基因組補救攝鐵缺失菌株的生長缺陷不受到酸鹼值影響。這些結果顯示fetMP基因組可能比eco42-43、eco60-63基因組在攝鐵功能上扮演比較重要的角色。
雖然fetMP、eco42-43、eco60-63基因組對於細菌的生理以及致病力所扮演的角色仍須要進一步的研究,但結果顯示pRS218質體可能增加RS218的攝鐵能力而幫助此菌在缺鐵環境中生長,進而增加細菌的致病力。
Escherichia coli. E. coli K1 RS218, an extraintestinal pathogenic E. coli (ExPEC) strain isolated from a neonate with meningitis patient, containing a plasmid named pRS218. Based on the genomic information and protein blast results, we identified 3 potential iron acquisition systems located on the pRS218. Among the 3 operons of pRS218, the fetMP operon encodes a ferrous iron transport system. The eco42-43 operon encodes a potential heme transport system, which may utilize heme-iron as an iron source. The eco60-63 operon has been predicted to be involved in iron acquisition. We constructed an iron-uptake defected MG1655 E. coli K12 strain and utilize the strain to investigate the iron-uptake function of these operons carried by pRS218. The growth results suggest that the fetMP operon may play a more significant role than the eco42-43 and eco60-63 operons in terms of iron uptake. Overall, our results suggest that the pRS218 plasmid may contribute to the iron-uptake ability of RS218, to facilitate bacterial growth in iron-restricted condition when in host as well as to increase the virulence of the bacterial pathogen.
key word: Escherichia coli, iron-uptake gene
1. Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS microbiology reviews 27:215-237.
2. Saha R, Saha N, Donofrio RS, Bestervelt LL. 2013. Microbial siderophores: a mini review. Journal of basic microbiology 53:303-317.
3. Ward RJ, Crichton RR, Taylor DL, Della Corte L, Srai SK, Dexter DT. 2011. Iron and the immune system. Journal of neural transmission 118:315-328.
4. Schaible UE, Kaufmann SH. 2004. Iron and microbial infection. Nature reviews. Microbiology 2:946-953.
5. Koster W. 2005. Cytoplasmic membrane iron permease systems in the bacterial cell envelope. Frontiers in bioscience : a journal and virtual library 10:462-477.
6. Hohle TH, O'Brian MR. 2009. The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Molecular microbiology 72:399-409.
7. Koster W. 2001. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Research in microbiology 152:291-301.
8. Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC. 2007. EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Molecular microbiology 65:857-875.
9. Anzaldi LL, Skaar EP. 2010. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infection and immunity 78:4977-4989.
10. Rohmer L, Hocquet D, Miller SI. 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends in microbiology 19:341-348.
11. Skaar EP. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS pathogens 6:e1000949.
12. Xie Y, Kim KJ, Kim KS. 2004. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS immunology and medical microbiology 42:271-279.
13. Bonacorsi S, Bingen E. 2005. Molecular epidemiology of Escherichia coli causing neonatal meningitis. International journal of medical microbiology : IJMM 295:373-381.
14. Kohler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? International journal of medical microbiology : IJMM 301:642-647.
15. Ron EZ. 2006. Host specificity of septicemic Escherichia coli: human and avian pathogens. Current opinion in microbiology 9:28-32.
16. Belanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM. 2011. Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS immunology and medical microbiology 62:1-10.
17. Johnson JR, Delavari P, O'Bryan TT. 2001. Escherichia coli O18:K1:H7 isolates from patients with acute cystitis and neonatal meningitis exhibit common phylogenetic origins and virulence factor profiles. The Journal of infectious diseases 183:425-434.
18. Skyberg JA, Johnson TJ, Johnson JR, Clabots C, Logue CM, Nolan LK. 2006. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infection and immunity 74:6287-6292.
19. Johnson TJ, Kariyawasam S, Wannemuehler Y, Mangiamele P, Johnson SJ, Doetkott C, Skyberg JA, Lynne AM, Johnson JR, Nolan LK. 2007. The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. Journal of bacteriology 189:3228-3236.
20. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antao EM, Laturnus C, Diehl I, Glodde S, Homeier T, Bohnke U, Steinruck H, Philipp HC, Wieler LH. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? International journal of medical microbiology : IJMM 297:163-176.
21. Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau S, Germon P, Rasschaert D, Schouler C. 2007. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of clinical microbiology 45:3366-3376.
22. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Medigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S. 2009. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infection and immunity 77:2272-2284.
23. Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, Li G, Wannemuehler Y, Nolan LK. 2010. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infection and immunity 78:3412-3419.
24. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiology and molecular biology reviews : MMBR 73:750-774.
25. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infection and immunity 78:1457-1467.
26. Li G, Tivendale KA, Liu P, Feng Y, Wannemuehler Y, Cai W, Mangiamele P, Johnson TJ, Constantinidou C, Penn CW, Nolan LK. 2011. Transcriptome analysis of avian pathogenic Escherichia coli O1 in chicken serum reveals adaptive responses to systemic infection. Infection and immunity 79:1951-1960.
27. Achtman M, Mercer A, Kusecek B, Pohl A, Heuzenroeder M, Aaronson W, Sutton A, Silver RP. 1983. Six widespread bacterial clones among Escherichia coli K1 isolates. Infection and immunity 39:315-335.
28. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular systems biology 2:2006 0008.
29. J. Sambrook EFFaTM. 1989. Molecular Cloning: A Laboratory Manual. 3.
30. Koch D, Chan AC, Murphy ME, Lilie H, Grass G, Nies DH. 2011. Characterization of a dipartite iron uptake system from uropathogenic Escherichia coli strain F11. The Journal of biological chemistry 286:25317-25330.
31. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 97:6640-6645.
32. Escolar L, Perez-Martin J, de Lorenzo V. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. Journal of bacteriology 181:6223-6229.
33. Stojiljkovic I, Baumler AJ, Hantke K. 1994. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay. Journal of molecular biology 236:531-545.
34. Smajs D, Weinstock GM. 2001. The iron- and temperature-regulated cjrBC genes of Shigella and enteroinvasive Escherichia coli strains code for colicin Js uptake. Journal of bacteriology 183:3958-3966.
35. Mills M, Payne SM. 1997. Identification of shuA, the gene encoding the heme receptor of Shigella dysenteriae, and analysis of invasion and intracellular multiplication of a shuA mutant. Infection and immunity 65:5358-5363.
36. Torres AG, Payne SM. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Molecular microbiology 23:825-833.
37. Hagan EC, Mobley HL. 2009. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Molecular microbiology 71:79-91.
38. Spurbeck RR, Dinh PC, Jr., Walk ST, Stapleton AE, Hooton TM, Nolan LK, Kim KS, Johnson JR, Mobley HL. 2012. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize the urinary tract. Infection and immunity 80:4115-4122.
39. Hancock V, Ferrieres L, Klemm P. 2008. The ferric yersiniabactin uptake receptor FyuA is required for efficient biofilm formation by urinary tract infectious Escherichia coli in human urine. Microbiology 154:167-175.
40. Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. 2002. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infection and immunity 70:7156-7160.
41. Negre VL, Bonacorsi S, Schubert S, Bidet P, Nassif X, Bingen E. 2004. The siderophore receptor IroN, but not the high-pathogenicity island or the hemin receptor ChuA, contributes to the bacteremic step of Escherichia coli neonatal meningitis. Infection and immunity 72:1216-1220.
42. Caza M, Lepine F, Milot S, Dozois CM. 2008. Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infection and immunity 76:3539-3549.
43. Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM. 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infection and immunity 71:1919-1928.
44. Zaharik ML, Cullen VL, Fung AM, Libby SJ, Kujat Choy SL, Coburn B, Kehres DG, Maguire ME, Fang FC, Finlay BB. 2004. The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infection and immunity 72:5522-5525.
45. Sabri M, Leveille S, Dozois CM. 2006. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745-758.
46. Fisher CR, Davies NM, Wyckoff EE, Feng Z, Oaks EV, Payne SM. 2009. Genetics and virulence association of the Shigella flexneri sit iron transport system. Infection and immunity 77:1992-1999.
47. Huang X MW. 1991. A time-efficient, linear-space local similarity algorithm. Advances in Applied Mathematics 12:337-357.
48. Brindley AA, Raux E, Leech HK, Schubert HL, Warren MJ. 2003. A story of chelatase evolution: identification and characterization of a small 13-15-kDa "ancestral" cobaltochelatase (CbiXS) in the archaea. The Journal of biological chemistry 278:22388-22395.
49. Bracken CS, Baer MT, Abdur-Rashid A, Helms W, Stojiljkovic I. 1999. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. Journal of bacteriology 181:6063-6072.
50. Liu X, Olczak T, Guo HC, Dixon DW, Genco CA. 2006. Identification of amino acid residues involved in heme binding and hemoprotein utilization in the Porphyromonas gingivalis heme receptor HmuR. Infection and immunity 74:1222-1232.
51. Kumar P, Sannigrahi S, Tzeng YL. 2012. The Neisseria meningitidis ZnuD zinc receptor contributes to interactions with epithelial cells and supports heme utilization when expressed in Escherichia coli. Infection and immunity 80:657-667.
52. Stojiljkovic I, Hantke K. 1992. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. The EMBO journal 11:4359-4367.
53. Elkins C. 1995. Identification and purification of a conserved heme-regulated hemoglobin-binding outer membrane protein from Haemophilus ducreyi. Infection and immunity 63:1241-1245.
54. Stojiljkovic I, Hwa V, de Saint Martin L, O'Gaora P, Nassif X, Heffron F, So M. 1995. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Molecular microbiology 15:531-541.
55. Simpson W, Olczak T, Genco CA. 2000. Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. Journal of bacteriology 182:5737-5748.
56. Murphy ER, Sacco RE, Dickenson A, Metzger DJ, Hu Y, Orndorff PE, Connell TD. 2002. BhuR, a virulence-associated outer membrane protein of Bordetella avium, is required for the acquisition of iron from heme and hemoproteins. Infection and immunity 70:5390-5403.
57. Furano K, Campagnari AA. 2004. Identification of a hemin utilization protein of Moraxella catarrhalis (HumA). Infection and immunity 72:6426-6432.
58. Paulley JT, Anderson ES, Roop RM, 2nd. 2007. Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infection and immunity 75:5248-5254.
59. Garcia EC, Brumbaugh AR, Mobley HL. 2011. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infection and immunity 79:1225-1235.
60. Mao BH, Chang YF, Scaria J, Chang CC, Chou LW, Tien N, Wu JJ, Tseng CC, Wang MC, Chang CC, Hsu YM, Teng CH. 2012. Identification of Escherichia coli genes associated with urinary tract infections. Journal of clinical microbiology 50:449-456.
61. Chan AC, Lelj-Garolla B, F IR, Pedersen KA, Mauk AG, Murphy ME. 2006. Cofacial heme binding is linked to dimerization by a bacterial heme transport protein. Journal of molecular biology 362:1108-1119.
62. 陳冠福. 2013. eco60-63 基因組在大腸桿菌K1受到血清攻擊時所扮演的角色.
63. Ouyang Z, Isaacson R. 2006. Identification and characterization of a novel ABC iron transport system, fit, in Escherichia coli. Infection and immunity 74:6949-6956.
64. Henderson DP, Wyckoff EE, Rashidi CE, Verlei H, Oldham AL. 2001. Characterization of the Plesiomonas shigelloides genes encoding the heme iron utilization system. Journal of bacteriology 183:2715-2723.
65. Mourino S, Osorio CR, Lemos ML. 2004. Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum. Journal of bacteriology 186:6159-6167.
66. Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM. 2006. Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infection and immunity 74:3427-3436.
67. Najimi M, Lemos ML, Osorio CR. 2008. Identification of heme uptake genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida. Archives of microbiology 190:439-449.
68. Xiong K, Chen Z, Xiang G, Wang J, Rao X, Hu F, Cong Y. 2012. Deletion of yncD gene in Salmonella enterica ssp. enterica serovar Typhi leads to attenuation in mouse model. FEMS microbiology letters 328:70-77.
69. Firth N, K. Ippen-Ihler, and R. Skurray. 1996. Structure and function of the F factor and mechanism of conjugation., p. 2377-2401, 2nd ed, vol. 2.
70. Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss JJ, Schembri MA. 2012. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infection and immunity 80:333-344.
71. Ratledge C, Dover LG. 2000. Iron metabolism in pathogenic bacteria. Annual review of microbiology 54:881-941.
72. Dobrindt U. 2005. (Patho-)Genomics of Escherichia coli. International journal of medical microbiology : IJMM 295:357-371.
73. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K. 2006. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International journal of medical microbiology : IJMM 296:513-520.
74. Nagy TA, Moreland SM, Andrews-Polymenis H, Detweiler CS. 2013. The ferric enterobactin transporter Fep is required for persistent Salmonella enterica serovar Typhimurium infection. Infection and immunity 81:4063-4070.
75. Hohle TH, Franck WL, Stacey G, O'Brian MR. 2011. Bacterial outer membrane channel for divalent metal ion acquisition. Proceedings of the National Academy of Sciences of the United States of America 108:15390-15395.
76. Letoffe S, Delepelaire P, Wandersman C. 2006. The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Proceedings of the National Academy of Sciences of the United States of America 103:12891-12896.
77. Dimitrov JD, Roumenina LT, Doltchinkova VR, Vassilev TL. 2007. Iron ions and haeme modulate the binding properties of complement subcomponent C1q and of immunoglobulins. Scandinavian journal of immunology 65:230-239.
78. Yu CS, Lin CJ, Hwang JK. 2004. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein science : a publication of the Protein Society 13:1402-1406.
79. Runyen-Janecky LJ. 2013. Role and regulation of heme iron acquisition in gram-negative pathogens. Frontiers in cellular and infection microbiology 3:55.
80. Genco CA, Dixon DW. 2001. Emerging strategies in microbial haem capture. Molecular microbiology 39:1-11.
81. Dimitrov JD, Roumenina LT, Doltchinkova VR, Mihaylova NM, Lacroix-Desmazes S, Kaveri SV, Vassilev TL. 2007. Antibodies use heme as a cofactor to extend their pathogen elimination activity and to acquire new effector functions. The Journal of biological chemistry 282:26696-26706.
82. Visai L, Yanagisawa N, Josefsson E, Tarkowski A, Pezzali I, Rooijakkers SH, Foster TJ, Speziale P. 2009. Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology 155:667-679.
83. Wang CY, Wang SW, Huang WC, Kim KS, Chang NS, Wang YH, Wu MH, Teng CH. 2012. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infection and immunity 80:3399-3409.
84. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology 166:557-580.
85. Pollack JR, Neilands JB. 1970. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochemical and biophysical research communications 38:989-992.
86. Heesemann J. 1987. Chromosomal-encoded siderophores are required for mouse virulence of enteropathogenic Yersinia species. FEMS microbiology letters 48:229-233.
87. Baumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F. 1996. Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207-213.
88. Kadner RJ, Liggins GL. 1973. Transport of vitamin B12 in Escherichia coli: genetic studies. Journal of bacteriology 115:514-521.
89. Hantke K. 1990. Dihydroxybenzoylserine--a siderophore for E. coli. FEMS microbiology letters 55:5-8.
90. Wookey P, Rosenberg H. 1978. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli. Journal of bacteriology 133:661-666.
91. Kadner RJ, Heller K, Coulton JW, Braun V. 1980. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. Journal of bacteriology 143:256-264.
92. Hantke K. 1983. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Molecular & general genetics : MGG 191:301-306.
93. Hantke K. 2002. Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein. Journal of molecular microbiology and biotechnology 4:217-222.
94. Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA. 2000. Proteomic analysis of the Escherichia coli outer membrane. European journal of biochemistry / FEBS 267:2871-2881.
95. Rakin A, Saken E, Harmsen D, Heesemann J. 1994. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Molecular microbiology 13:253-263.
96. Baumler AJ, Norris TL, Lasco T, Voight W, Reissbrodt R, Rabsch W, Heffron F. 1998. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. Journal of bacteriology 180:1446-1453.
97. Kammler M, Schon C, Hantke K. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. Journal of bacteriology 175:6212-6219.
98. Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF. 2000. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Molecular microbiology 35:1065-1078.
99. Zhou D, Hardt WD, Galan JE. 1999. Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infection and immunity 67:1974-1981.
100. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.