| 研究生: |
施銘賢 Shih, Ming-Shyan |
|---|---|
| 論文名稱: |
在非達西效應下多孔性介質液體蒸發之研究 A study of evaporation of liquid with porous media under non-Darcy effect |
| 指導教授: |
黃明哲
Huang, Ming-Jer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 混合對流 、強制對流 、非達西效應 、多孔性介質 |
| 外文關鍵詞: | forced convection, mixed convection, Non-Darcy effect, porous media |
| 相關次數: | 點閱:179 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是探討非牛頓流體與牛頓流體在多孔性介質中熱質量傳遞,以了解液體蒸發現象,數值方法是利用凱勒盒子法(box method) 將方程式降階特性。文中將探討問題有水平板與垂直平板在牛頓流體中非達西效應下液體蒸發、水平板與垂直平板在非牛頓流體中非達西效應下液體蒸發。
(1)當水平板與垂直平板在牛頓流體時:
水平板中達西項阻力 對於流場速度的影響是遠大於慣性效應 ,液體熱、質傳遞量則受慣性效應影響較大。水平板的液體蒸發率將隨著慣性效應逐漸變大而增加;但垂直平板時,流體蒸發率會隨著 增大而增加。
(2)當水平板與垂直平板在非牛頓流體時:
在水平板中流動指標N對速度場之影響較大於溫度場及濃度場。流體速度隨N及慣性效應的增加而增加。當增加N或是慣性效應均能提高液體蒸發效果。垂直平板方面,當流動指標較小在靠近壁面附近有較大速度分佈,同時也具有較佳的液體蒸發率。
This paper analyzes the problem of liquid evaporation with non-Darcian effects on forced convection and natural convection flow over a flat plate and vertical plate in an isotropic porous media under the non-Newtonian and Newtonian fluid. The nonlinear boundary layer equations with the effects of boundary, Darcian resistance, and inertial resistance were solved using Keller’s box method. The results show that
(1) When the Newtonian fluid in the flow:
In flat plate, the velocity distributions were affected by the Darcy resistance more than inertial effect but the latter have more affects to heat flux and the evaporation of liquid. In vertical plate, the evaporation of liquid increase with the increase of .
(2) When the non-Newtonian fluid in the flow:
In flat plate, the velocity and evaporation of liquid increases with the increase of the flow index N or the inertial effects. In vertical plate, the more near wall has the more big velocity when the flow index N was less. The less flow index N should be caused to the good evaporation of liquid.
[1]P. Cheng, Heat transfer in geothermal system, Advances in Heat Transfer 14, 1-105(1979).
[2] A. Bejan, Convection heat Transfer, New York: John Wiley & Sons, 1984.
[3] Forchheimer, P. H. Wasserbewegun durch Boden, Zeitschrift des Vereins. Deutscher Ingenieure. 45, 1782-1788 (1901).
[4] S. Ergun, “Fluid flow through packed columns”, Chemical Engineering Progress, 45, 89-94(1952).
[5] H. C, Brinkman, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm particles”, Appl. Sci. Res., 1, 27-34 (1974).
[6] K. Vafai and C. L. Tien, “Boundary and inertial effects on flow and
heat transfer inporous media”, Int. J. Heat Mass Transfer. 24, 195-20
03(1981).
[7] K. Vafai, “Convective flow and heat transfer in variable-porosity
media”, J. Fluid Mech., 147, 233-259(1984).
[8] C, Beckermann and R. Viskanta, “Forced convection boundary layer flow and heat transfer along a flat plate embedded in a porous medium”, Int. J. Heat Mass Transfer. 30, 1547-1551(1987).
[9] M. Kaviany, “Boundary-layer treatment of forced convection heat transfer from a semi-infinite flat plate embedded in porous media”, ASME J. Heat Transfer, 109, 345-349(1987).
[10] A. Nakayama, T. kokudai and H. koyama, “Non-Darcian boundary layer flow and forced convective heat transfer over a flat plate in a fluid-saturated porous medium”, ASME J. Heat Transfer, 112, 157-160(1990).
[11] M. A. Hossain, N. Banu and A. Nakayama, “Non-Darcian forced convection boundary layer flow over a wedge embedded in a saturated porous medium”, Numerical Heat Transfer, Part A, 26, 399-414(1994).
[12] A. V. Kuznetsov, “Analtical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid”, Int. J. Heat Mass Transfer, 41, No.16, 2556-2560(1998).
[13] K. A. Yih, “Blowing/suction effect on non-Darcian forced convection flow about a flat plate with variable wall temperature in porous media”, ACTA Mechanica, 131, 255-265(1998).
[14] B. Alazmi and K. Vafai, “Analysis of variants within the porous media transport models”, ASME J. Heat Transfer, 122, 303-326(2000).
[15] P. Cheng, “Combined free and forced convection flow about inclined surface in porous media”, Int. J. Heat Mass Transfer, 20, 807-814(1977).
[16] A. Bejan and D. Poulikakos, “The Non-Darcy regime for vertical boundary layer natural convection in a porous medium”, Int. J. Heat Mass Transfer. 27, No. 5, 717-722(1984).
[17] P. Ranganathan and R. Viskanta, “Mixed convection boundary-layer flow along a vertical surface in a porous medium”, Numerical Heat Transfer, 7, 305-317(1984).
[18] J. T. Hong, C. L. Tien and M. Kaviany, “Non-Darcian effects on vertical-plate natural convection in porous media with high porosities”, Int. J. Heat Mass Transfer. 28, No. 11, 2149-2157(1985).
[19] K. S. Chen and J. R. Ho, “Effects off flow inertia on vertical natural convection in saturated porous media”, Int. J. Heat Mass Transfer, 29, No.5, 753-759(1986).
[20] G. Lauriat and V. Prasad, “Non-Darcian effects on natural convection in a vertical porous enclosure”, Int. J. Heat Mass Transfer, 32, No.11, 2135-2148(1989).
[21] H. S. Takhar, V. M. Soundalgekar and A. S. Gupta, “Mixed convection of an incompressible fluid in a porous medium past a hot vertical plate”, Int. J. Heat Mass Transfer, 25, No.6, 723-728(1990).
[22] F. C. Lai, “Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium”, INT. COMM. HEAT MASS TRANSFER, 18, 93-106(1991).
[23] A. V. Shenoy, “Darcy natural forced and mixed isothermal vertical flat plate embedded in a porous medium saturated with an elastic fluid of constant viscosity”, Int. J. Engng Sci. 30, No.4, 455-467(1992).
[24] H. S. Takhar and O. A. Beg, “Non-Darcy effects on convection boundary layer flow past a semi-infinite vertical plate in saturated porous media”, Heat and Mass transfer, 32, 33-44(1996).
[25] B. C. Chandrasekhara, N. Radha and M. Kumari, “The effect of mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a vertical heated plate”, Warme-und Stoffubertragung, 27, 157-166(1992).
[26] D. A. S. Rees and I. Pop, “A note on free convection along a vertical wavy surface in a porous medium”, ASME J. Heat Transfer, 116, 505-508(1994).
[27] K. A. Yih, “Heat source/sink effect on MHD mixed convection on stagnation flow on a vertical permeable plate in porous media”, Int. Comm. Heat Mass Transfer, 25, No. 3, 427-442(1998).
[28] J. Schroppel and F. Thiele, “On the calculation of momentum, heat, and mass transfer in laminar and turbulen boundary layer floes along a vaporizing liquid film”, Numerical Heat Transfer, 6, 475-496(1983).
[29] L. C. Chow and J. N. Chung, “Evaporation of water into a laminar stream of air and superheated steam”, Int. J. Heat and Mass Transfer, 26, No. 3, 373-380(1983).
[30] T. R. Shembharkar and B. R. Pai, “Prediction of film cooling with a liquid coolant”, Int. J. Heat and Mass Transfer, 29, No.6, 899-908(1986).
[31] S. L. Chen and S. S. Chung, “Analysis of vapor condensation in porous media”, Journal of the Chinese Institute of Engineers., 12, No. 6, 737-744(1989)
[32] Y. L. Tsay, T. F. Lin and W. M. Yan, “Cooling of a falling liquid film through interfacial heat and mass transfer”, Int. J. Multiphase flow., 16, No.5, 853-865(1990)
[33] W. M. Yan and T. F. Lin, “Combined heat and mass transfer in natural convection between vertical parallel plates with film evaporation”, Int. J. Heat and Mass Transfer, 33, No.3, 529-541(1990).
[34] W. M. Yan and T. F. Lin, “Evaporation cooling of liquid film through interfacial heat and mass transfer in a vertical channel-II. Numerical study”, Int. J. Heat and Mass Transfer, 34, No. 4/5, 1113-1124(1991).
[35] W. M. Yan, “Effects of film evaporation on laminar mixed convection heat and mass transfer in a vertical channel”, Int. J. Heat and Mass Transfer, 35, No.12, 3419-3429(1992).
[36] W. M. Yan and C. Y. Soong, “Numerical study of liquid film cooling in a turbulent gas stream”, Int. J. Heat and Mass Transfer, 36, No.16, 3877-3885(1993).
[37] W. M. Yan, ”Binary diffusion and heat transfer in mixed convection pipe flows with film evaporation”, Int. J. Heat and Mass Transfer, 36, No.8, 2115-2123(1993).
[38] W. M. Yan and C. Y. Soong, “Covective heat and mass transfer along an inclined heated plate with film evaporation”, Int. J. Heat and Mass Transfer, 38, No.7, 1261-1269(1995).
[39] T. S. Zhao, “Coupled heat and mass transfer of a stagnation point flow in a heated porous bed with liquid film evaporation”, Int. J. Heat and Mass Transfer, 42, 861-872(1999).
[40] T. Cebeci and P. Bradshaw, “Physical and computational aspects of convective heat transfer”, Berlin, Heidelberg: Springer-Verlag, 1984.
[41] T. Cebeci and P. Bradshaw, “Momentum transfer in boundary layers”, Washington, Hemisphere, 1977.
[42] H. B. Keller, “A new difference scheme for parabolic problems, in numerical solution of partial-differential equations vol.II(Bramble J., ed.)”, New York:Acadmic 1970.
[43] F. M. White, Viscous fluid flow, New York: Mcgraw-Hill, 1991.
[44] S.M. Sze, Physics of semiconductor devices, New York: Wiley, 1981.
[45] F. C. Lai and F. A. Kulacki, “The influence of lateral mass flux on mixed convection over inclined surface in saturated porous media”, ASME J. Heat Transfer, 112, 515-518(1990).
[46] Y. P. Chang, R. Tsai and F. M. Sui, “The effect of thermophoresis on partice deposition from a mixed convection flow onto a vertical flat plate”, J. Aerosol Sci., 30, No.10, 1363-1378(1999).
[47] W. J. Chang and W. L. Chang, ”Mixed convection in a vertical parallel-plate channel partially filled with porous media of high permeability”, Int. J. Heat and Mass Transfer, 39, No.7, 1331-1342(1996).
[48] M. J. Huang and B. L. Lin, “Forced convective flow over a flat plate in non-Newtonian power law fluids”, , 27, 399-404(1992).
[49] J. C. Hsieh, T. S. Chen and B. F. Armaly, “Nonsimilarity solutions for mixed convection from vertical surface in porous media : vaiable surface temperature or heat flux”, Int. J. Heat Mass Transfer, 36, 1485-1493(1993).
[50] R. S. R. Gorla and M. Kumari, “mixed convection in non-newtonian fluids along a vertical plate in a porous medium”, Acta mechanic, 118, 55-64(1996).
[51] S. K. Rastogi and D. Poulikakos, “Double-diffusion from a vertical surface in a porous region saturated with a non-Newtonian Fluid”, Int. J. Heat Mass Transfer, 38, No. 5, 935-946(1995).
[52] R. V. Dharmadhikari, D. D. Kale, “Flow of non-Newtonian fluids through porous media”, Chem. Eng. Sci., 40, 527-529(1985).