簡易檢索 / 詳目顯示

研究生: 符凌斌
Foo, Ning-Ping
論文名稱: 固定輔具是否能改善救護人員在行進中救護車操作心肺復甦術的急救品質與背痛
A Stabilization Device to improve the Quality of Cardiopulmonary Resuscitation and Back Pain during Ambulance Transportation.
指導教授: 郭浩然
Guo, How-Ran
學位類別: 博士
Doctor
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 63
中文關鍵詞: 心肺復甦術到院前心跳停止救護車固定輔具運送背痛
外文關鍵詞: Cardiopulmonary resuscitation, Out-of-hospital cardiac arrest, Ambulance, Stabilization Device, Transportation, Back pain
相關次數: 點閱:85下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:到院前心跳停止個案的存活率相當的低,需要更多的措施去改善在救護車上運送病患到醫院途中的心肺復甦術(CPR)品質。
    目的: 評估使用固定輔具能否改善在行進間救護車操作CPR的急救品質。
    研究方法:研究試驗可分成第一階段與第二階段。第一階段是前膽性、隨機、交叉研究,招募了22位救護技術員,比較在三種不同的情境下以急救假人模具進行十分鐘CPR,分別是在原地不動的救護車內(NM),行進間救護車不使用輔具(MND),以及行進間救護車使用輔具(MD)。主要成效是有效壓胸比,次要成效包含以簡式-簡易疼痛量表評估的背痛程度,量測CPR前後的的生理指標,角度測量器測出來的搖擺指數以及問卷調查救護技術員對於固定輔具的意見。第二階段是一前後測比較的研究,在第一階段後的兩年進行,招募同一批救護技術員,使用新型固定輔具(MVSD),在行進間救護車使用MVSD進行CPR10分鐘的測試,其成效的測量與第一階段研究一樣。我們利用第二階段收集到的資料與第一階段資料比較。
    結果: 在第一階段,十分鐘的整體有效壓胸比,在NM是87.0±17%,在MND是59.0±19%,在MD是69.0±23% (p< 0.001)。與MND比較,MD在行走間經過轉彎處時有顯著較低的無灌流比(0.04 vs. 0.29,p< 0.001)。背痛以及各類生活干擾因子在各組皆沒有明顯差異。另一方面,MND比MD及NM,有顯著較高的搖擺指數。在第二階段,整體十分鐘的有效壓胸比,在NM是86.4±17.5%,在MND是60.9±14.6%,在MD是69.7±22.4%,以及在MVSD是86.6%±13.2% (p< 0.001)。另一方面,背痛的嚴重程度以及生理指標在各組皆沒有明顯差異,但MVSD有最低的無灌流比率,遠比MND以及MD來得低,但與NM沒有顯著差異。
    結論: 使用固定輔具可改善行進間救護車操作CPR的品質以及姿勢的穩定度,但對背痛的嚴重度沒有影響。而使用新式固定輔具能明顯增加行進間救護車內CPR的品質,其效果達到與原地不動救護車內操作CPR的品質一樣好,且不會增加背痛的嚴重度。

    Background: The survival rate of patients with out-of-hospital cardiac arrest is low, and measures to improve the quality of cardiopulmonary resuscitation (CPR) during ambulance transportation are desirable.
    Purpose: To evaluate whether the use of a stabilization device can improve the quality of CPR during ambulance transportation and reduce back pain in the rescuer.
    Methods: Our study was divided into two parts, Phase I and Phase II. The Phase I study was a randomized controlled crossover trial which enrolled 22 experienced ambulance officers. Each participant performed CPR in an ambulance under three conditions with 72 hours apart, each condition for 10 min: non-moving (NM), moving without device (MND), and moving with device (MD). The sequences of conditions were randomized. The primary outcomes were effective chest compressions recorded by the Laerdal Resusci-Anne Skill-reporter manikin. The secondary outcomes included the severity of back pain scored using the Brief Pain Inventory short-form, the physiology parameter before and after CPR, and the changes in postural stability which was represented by the sway index (SI) of lower back measured using a goniometer. The Phase II was a before-and-after study, which was done two years after the Phase I study. Participants of the Phase I study were recruited, and they performed CPR for 10 minutes in a moving ambulance with the modified version of the stabilization device (MVSD). The outcome variables were the same as Phase I study.
    Results: In phase I study, the overall effective compressions in 10 min were 87.0 ± 17% for NM, 59.0 ± 19% for MND, and 69.0 ± 23% for MD (p < 0.001). Compared to MND, MD had a lower no-flow fraction while driving on curved sections (0.04 vs. 0.29, p < 0.001). Whereas the pain severity and social interference scores were similar under all conditions, MND had a higher SI than MD and NM. In Phase II study, the overall effective compressions in 10 minutes were 86.4 ± 17.5% for NM, 60.9 ± 14.6% for MND, 69.7 ± 22.4% for MD, and 86.6% ± 13.2% for MVSD (p < 0.001). Whereas changes in back pain severity and physiology parameters were similar under all conditions, MVSD had the lowest no-flow fraction. Differences in effective compressions and the no-flow fraction between MVSD and NM did not reach statistical significance.
    Conclusions: The use of a stabilization device can improve the quality of CPR and posture stability during ambulance transportation, although the effects on the severity of back pain were not significant. In addition, the use of the MVSD can improve quality of CPR in a moving ambulance to a level similar to that in a non-moving condition without increasing the severity of back pain.

    博士論文合格證明書…………………………………………………………………II 中文摘要………………………………………………………………………………III Abstract……………………………………………………………………………IV Acknowledgement…………………………………………………………………VI Contents……………………………………………………………………………VII List of Tables…………………………………………………………………IX Lists of Figures…………………………………………………………………X Appendix………………………………………………………………………………59 1.Background…………………………………………………………………………1 2.Study Objective…………………………………………………………………5 3.Material Methods………………………………………………………………6 3.1.Study design, participants and setting of Phase I study……………………………………………………………………………………6 3.2.Intervention of Phase I study………………………………………7 3.3.Outcome assessments of Phase I study……………………………8 3.4.Statistical analysis of Phase I study…………………………10 3.5.Ethics of Phase I study………………………………………………10 3.6.Study design, participants and setting of Phase II study…………………………………………………………………………………11 3.7.Intervention of Phase II study……………………………………11 3.8.Outcome assessments of Phase II study…………………………12 3.9.Statistical analysis of Phase II study………………………13 3.10.Ethics of Phase II study……………………………………………13 4.Results……………………………………………………………………………14 4.1.Participant characteristics of Phase I study.……………14 4.2.Effective chest compression of Phase I study………………14 4.3.Sway index of Phase I study…………………………………………15 4.4.Pain and social interference scores of Phase I study…15 4.5.Physiology parameters of Phase I study.………………………15 4.6.Participant characteristics of Phase II study……………16 4.7.Effective chest compression and no-flow fraction of Phase II study……………………………………………………………………16 4.8.Pain and social interference scores of Phase II study.17 4.9.Physiology parameters of Phase II study………………………17 4.10.Questionnaires of Phase II study………………………………18 5.Discussion………………………………………………………………………19 5.1.Discussion of Phase I study…………………………………………19 5.2.Discussion of Phase II study………………………………………23 6.Conclusion………………………………………………………………………29 7.References………………………………………………………………………30

    1.Stiell IG, Wells GA, Field B, Spaite DW, Nesbitt LP, De Maio VJ, Nichol G, Cousineau D, Blackburn J, Munkley D, Luinstra-Toohey L, Campeau T, Dagnone E, Lyver M; Ontario Prehospital Advanced Life Support Study Group. Advanced cardiac life support in out-of-hospital cardiac arrest. N Engl J Med. 12;351(7):647–56. 2004.
    2.McNally B, Robb R, Mehta M, Vellano K, Valderrama AL, Yoon PW, Sasson C, Crouch A, Perez AB, Merritt R, Kellermann A; Centers for Disease Control and Prevention. Out-of-hospital cardiac arrest surveillance-cardiac arrest registry to enhance survival (CARES), United States, October 1, 2005– December 31, 2010. MMWR Surveill Summ. 29;60(8):1–19. 2011.
    3.Olasveengen TM, Vik E, Kuzovlev A, Sunde K. Effect of implementation of new resuscitation guidelines on quality of cardiopulmonary resuscitation and survival. Resuscitation. 80(4):407–11. 2009.
    4.Iwami T, Hiraide A, Nakanishi N, Hayashi Y, Nishiuchi T, Uejima T, Morita H, Shigemoto T, Ikeuchi H, Matsusaka M, Shinya H, Yukioka H, Sugimoto H. Outcome and characteristics of out of-hospital cardiac arrest according to location of arrest: a report from a large-scale, population-based study in Osaka, Japan. Resuscitation. 69(2):221–8. 2006.
    5.Lim SH, Anantharaman V, Teo WS, Chan YS, Chee TS, Chua T. Results of the first five years of the prehospital automatic external defibrillation project in Singapore in the “Utstein style”. Resuscitation. 64(1):49–57. 2005.
    6.Travers AH, Rea TD, Bobrow BJ, Edelson DP, Berg RA, Sayre MR, Berg MD, Chameides L, O'Connor RE, Swor RA. Part 4: CPR overview: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2;122(18 Suppl 3):S676–84. 2010.
    7.Havel C, Schreiber W, Riedmuller E, Haugk M, Richling N, Trimmel H, Malzer R, Sterz F, Herkner H. Quality of closed chest compression in ambulance vehicles, flying helicopters and at the scene. Resuscitation. 73(2):264–70. 2007.
    8.Ødegaard S, Olasveengen T, Steen PA, Kramer-Johansen J. The effect of transport on quality of cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Resuscitation. 80(8):843–8. 2009.
    9.Olasveengen TM, Wik L, Steen PA. Quality of cardiopulmonary resuscitation before and during transport in out-of-hospital cardiac arrest. Resuscitation. 76(2):185–90. 2007.
    10. Tsou JY, Chi CH, Hsu RM, Wu HF, Su FC. Mechanical loading of the low back during cardiopulmonary resuscitation. Resuscitation. 80(10):1181–6. 2009.
    11.Jones AY. Can cardiopulmonary resuscitation injury the back? Resuscitation. 61(1):63–7. 2004.
    12.Foo NP, Chang JH, Lin HJ, Guo HR. Rescuer fatigue and cardiopulmonary resuscitation positions: a randomized controlled crossover trial. Resuscitation. 81(5):579–84. 2010.
    13.Hu KW, Guo HR, Lee HL, Lin HJ, Lia CK, Chen KT, Foo NP. Cardiopulmonary resuscitation and back pain among emergency medical technicians. J Emerg Crit Care Med. 19(3):93–101. 2008.
    14.Slattery DE, Silver A. The hazards of providing in emergency vehicles: an opportunity for reform. Prehosp Emerg Care. 13(3):388–97. 2009.
    15.Cleeland CS. Measurement and prevalence of pain in cancer. Semin Oncol Nurs.1(2):87–92. 1985.
    16.Ger LP, Ho ST, Sun WZ, Wang MS, Cleeland CS. Validation of the brief pain inventory in a Taiwanese population. J Pain Symptom Manage. 18(5):316–22. 1999.
    17.Rawes ML, Richardson JB, Dias JJ. A new technique for the assessment of wrist movement using biaxial flexible electrogoniometer. J Hand Surg. 21(5):600–3. 1996.
    18.Isakov E, Mizrahi J, Ring H, Susak Z, Hakim N. Standing sway and weight-bearing distribution in people with below-knee amputations. Arch Phys Med Rehabil. 73(2):174–8. 1992.
    19. Guskiewicz KM, Perrin DH, Gansneder BM. Effect of mild head injury on postural stability in Athletes. J Athl Train. 31(4):300–6. 1996.
    20. Mattacola CG, Lebsack DA, Perrin DH. Intertester reliability of assessing postural sway using the chattecx balance system. J Athl Train. 30(3):237–42. 1995.
    21. Chang JH, Hsu HY, Su FC. Biomechanical measurement of painful wrist by flexible electro-goniometry. J Med Biol Eng. 25(1):33–7. 2005.
    22. Chung TN, Kim SW, Cho YS, Chung SP, Park I, Kim SH. Effect of vehicle speed on the quality of closed-chest compression during ambulance transport. Resuscitation.
    81(7):841–7. 2010.
    23. Kurz MC, Dante SA, Puckett BJ. Estimating the impact of off-balancing forces upon cardiopulmonary resuscitation during ambulance transport. Resuscitation.83(9):1085–9. 2012.
    24. Jones AY, Lee RY. Cardiopulmonary resuscitation and back injury in ambulance officers. Int Arch Occup Environ Health. 78(9):332–6. 2005.
    25. Halperin HR, Paradis N, Ornato JP, Zviman M, Lacorte J, Lardo A, Kern KB. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 44(11):2214–20. 2004
    26. Timerman S, Cardose LF, Ramires JA, Halperin H. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital
    cardiac arrest. Resuscitation. 61(3):273–80. 2004.
    27. Ong ME, Ornato JP, Edwards DP, Dhindsa HS, Best AM, Ines CS, Hickey S, Clark B, Williams DC, Powell RG, Overton JL, Peberdy MA. Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA. 295(22):2629–37. 2006.
    28. Hallstrom A, Rea TD, Sayre MR, Dhindsa HS, Best AM, Ines CS, Hickey S, Clark B, Williams DC, Powell RG, Overton JL, Peberdy MA. Manual chest compression vs. use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA. 14:2620–8. 2006.
    29. Valenzuela TD, Kern KB, Clark LL, Berg RA, Berg MD, Berg DD, Hilwig RW, Otto CW, Newburn D, Ewy GA. Interruptions of chest compressions during emergency medical systems resuscitation. Circulation. 112(9):1259–65. 2005.
    30. Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B, Steen PA. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293(3):299–304. 2005.
    31. Kim JA, Vogel D, Guimond G, Hostler D, Wang HE, Menegazzi JJ. A randomized, controlled comparison of cardiopulmonary resuscitation performed on the floor and on a moving ambulance stretcher. Prehosp Emerg Care. 10(1):68–70. 2006.
    32. Foo NP, Chang JH, Su SB, Lin HJ, Chen KT, Cheng CF, Lin TY, Chen PC, Guo HR. A stabilization device to improve the quality of cardiopulmonary resuscitation during ambulance transportation: A randomized crossover trial. Resuscitation. 84(11):1579–84. 2013.
    33. Fox J, Fiechter R, Gerstl P, Url A, Wagner H, Lüscher TF, Eriksson U, Wyss CA. Mechanical versus manual chest compression CPR under ground ambulance transport conditions. Acute Card Care 15:1–6. 2013.
    34. Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, Boomars R, Ahlstedt B, Skoog G, Kastberg R, Halliwell D, Box M, Herlitz J, Karlsten R. Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. 311(1):53–61. 2014
    35. Ong ME, Mackey KE, Zhang ZC, Tanaka H, Ma MH, Swor R, Shin SD. Mechanical CPR devices compared to manual CPR during out-of-hospital cardiac arrest and ambulance transport: a systematic review. Scand J Trauma Resusc Emerg Med. 18;20:39. doi: 10.1186/1757-7241-20-39. 2012
    36. Brooks SC, Hassan N, Bigham BL, Morrison LJ. Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev. 2:CD007260. doi: 10.1002/14651858.CD007260.pub3. 2014.
    37. Kahn CA1, Pirrallo RG, Kuhn EM. Characteristics of fatal ambulance crashes in the United States: an 11-year retrospective analysis. Prehosp Emerg Care. 5(3):261-9. 2001.

    下載圖示 校內:2020-02-13公開
    校外:2020-02-13公開
    QR CODE