簡易檢索 / 詳目顯示

研究生: 鍾俊輝
Chung, Chun-Hui
論文名稱: 平面四連桿與六連桿機構旋轉曲線之研究
On the Rotation Curves of Planar Four-bar and Six-bar Linkages
指導教授: 黃金沺
Huang, Chintein
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 旋轉曲線平桿機構四連桿組六連桿組
外文關鍵詞: Rotation Curves, Planar Mechanism, Six-bar Linkage, Four-bar Linkage
相關次數: 點閱:86下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要在研究平面四連桿及六連桿機構的旋轉曲線,旋轉曲線最早是在1955年由Lohse提出,為一剛體在平面上進行運動時所經過的所有位置相對於參位置的極心的連線,由於極心為空間中的螺旋在平面上的退化,故旋轉曲線可視為螺旋曲面在平面上的退化。
      對於平面機構的研究至今已累積了相當豐碩的成果,但在這些成果之中旋轉曲線卻顯得較不為人所知,實際上由於旋轉曲線是由剛體在平面上進行有限位移運動的極心所組成,所以其對於機構的有限位移運動的分析設計應該有一定程度的幫助。此外目前在文獻上關於旋轉曲線的研究大都是和平面四連桿機構有關,至於平面六連桿機構旋轉曲線的研究卻是非常少見,不過因為平面六連桿機構比平面四連桿機構複雜的關係,所以旋轉曲線在機構合成的應用的將會比平面四連桿機構還要合適。
      本文除了推導平面四連桿機構及Stephen III型平面六連桿機構旋轉曲線的解析式之外,另外也以電腦輔助的方式畫出平面六連桿機構的旋轉曲線,並藉由這些結果來推測其特性。

      This thesis studies the rotation curves of planar four-bar and six-bar linkages, which were originally defined by P. Loshe in 1955. A rotation curve is formed by the poles for all possible displacements of a rigid body from a reference position in a one-degree-freedom planar motion. Because poles are the degenerations of screws in space, rotation curves can be regarded as the degenerations of screw surfaces in space.
      Planar mechanisms have been extensively studied; however, rotation curves are not as familiar as other subjects. Rotation curves can be helpful tools for analysis and synthesis of planar mechanisms. The existing research reports for rotation curves are all related to planar four-bar linkages, and there is no related research on planar six-bar linkages. Nevertheless, the application of rotation curves in the synthesis of planar six-bar mechanisms may be even more powerful than that of planar four-bar linkages due to the complexity of six-bar linkages.
      In this thesis, the equations of the rotation curves of planar four-bar linkages are derived using a simplified geometric approach. Then the rotation curves of planar six-bar linkages are obtained numerically and visualized by using CAD programs, and some characteristics of these rotation curves are observed. Finally, the equation of the rotation curve of the Stephenson III six-bar linkage is derived using elimination methods.

    頁次 摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒言 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 2 1.4 本文架構 3 第二章 基本理論 4 2.1 旋轉曲線之定義 4 2.2 旋轉曲線之特性 6 2.3 Veldkamp推導之平面4R機構旋轉曲線解析式 6 第三章 平面四連桿機構旋轉曲線之解析式 10 3.1 平面4R機構之旋轉曲線 10 3.2 滑件曲柄機構之旋轉曲線 17 3.3 反滑件曲柄機構之旋轉曲線 21 3.4 雙滑件機構之旋轉曲線 27 第四章 平面六連桿機構之旋轉曲線 30 4.1 Watt I型機構之旋轉曲線 31 4.2 Watt II型機構之旋轉曲線 35 4.3 Stephenson I型機構之旋轉曲線 39 4.4 Stephenson II型機構之旋轉曲線 43 4.5 Stephenson III型機構之旋轉曲線 48 4.6 結論 51 第五章 Stephenson III型機構旋轉曲線之解析式 52 第六章 結論與未來展望 62 參考文獻 64 附錄 平面六連桿機構旋轉曲線程式 66

    1. Beyer, R., Kinematische Getriebesynthese, Springer-Verlag, Berlin, 1953.
    2. Erdman, A. G., and Sandor, G. N., Advanced Mechanism Design: Analysis and Synthesis, Vol. 2, Prentice-Hall, New Jersey, 1984.
    3. Huang, C., “The Cylindroid Associated with Finite Motions of the Bennett Mechanism,” Journal of Mechanical Design, Trans. ASME, Vol.119, pp.521-524, 1994.
    4. Lohse, P., “Polortkurven als Hilfsmittel sur Konstruktion von Gelenkgetrieben,” Z. angew. Math. Mech., Volume 38, No. 1/2, 1958.
    5. Lohse, P., Getriebesynthese, Springer-Verlag, Berlin, 1975.
    6. Manolescu, N. I., and Popa, Gh. C., “Sinteza Patru si Cinci-Positionala pe Baza Curbelor (pnk),” Proceedings of the IFToMM International Symposium on Linkages and Computer Design Methods, Bucharest, Romania, June 7-13, Volume A, Paper A-31, pp. 409-421, 1973.
    7. Manolescu, N. I., and Popa, Gh. C., “The Equations of the (pnk) Curves of the Planar Four-Bar Kinematic Chains,” Avtomaticheskaya Svarka, The 4th World Congress on the Theory of Mach and Mech, pp. 665-669, 1975.
    8. Norton, R. L., Design of Machinery, McGraw-Hill, Inc., New York, 1992.
    9. Popa, Gh. C. and Unteanu, C. E., “Sinteza Tripositionala pe Baza Curbelor (pnk),” Proceedings of the IFToMM International Symposium on Linkages and Computer Design Methods, Bucharest, Romania, June 7-13, Volume A, Paper 39, pp. 515-527, 1973.
    10. Roth, B., “Computations in Kinematics,” in Computational Kinematics, edited by J. Angeles, G. Hommel, and P. Kovacs, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3-14, 1993.
    11. Tsai, L. W., Robot Analysis: the Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York, 1999.
    12. Veldkamp, G. R., “Rotation Curves,” Journal of Mechanism, Vol. 2, pp. 147-156, 1967.
    13. Watanabe, K. and Funabashi, H., “Kinematic Analysis of Stephenson Six-Link Mechanisms(1st Report, Discremination of Composition Loops),” Bulletin of the JSME, Vol. 27, No. 234, pp. 2863-2870, 1984.
    14. 楊俊閔,平面四連桿機構有限位移極心曲線之研究,九十二年六月,國立成功大學機械工程研究所碩士論文,2003。

    下載圖示 校內:立即公開
    校外:2004-06-28公開
    QR CODE