簡易檢索 / 詳目顯示

研究生: 林黛安
Diane, Scoboria
論文名稱: 淚滴型圓柱厚度與層流分離泡現象關係之實驗研究
Experimental investigation of laminar separation bubbles on a series of teardrop cylinders with increasing thickness
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 142
中文關鍵詞: 層流分離泡圓柱厚度淚滴形圓柱阻力係數臨界狀態
外文關鍵詞: Laminar separation bubble, cylinder thickness, teardrop cylinder, drag coefficient, critical regime
相關次數: 點閱:33下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討淚滴型圓柱厚度對層流分離泡(LSB)形成的影響,透過表面壓力測量、油膜可視化、力平衡實驗以及CFD模擬進行分析。研究中針對三種厚度比分別為0.2、0.3及0.4的淚滴形圓柱,在雷諾數範圍2.8x104 ≤ Re ≤ 1.5x105和攻角0°至10°(包含0.5°、1°、2.5°及5°)的條件下,進行臨界狀態(Critical regime)的流場現象探討。結果顯示,隨著圓柱厚度增加,壓力係數的均方根值(CpRMS)會放大,LSB在較低攻角時更容易破裂,對於流場現象有顯著的改變。另一方面,本研究也發現,與NACA翼型和較薄的淚滴模型相比,傳統的淚滴形會在迎風側產生層流分離泡(LSB),因此其升力、阻力和臨界雷諾數特性等表現都與其他模型不同。另外,本研究還分析了非定常流場特性、渦街的斯特勞哈爾數、翼展方向上的LSB分布、Trip strip的效果,以及基於 k-kl-ω紊流模型的CFD模擬結果,這些發現進一步深化了對臨界狀態下LSB的理解。

    This study investigates the influence of teardrop cylinder thickness on laminar separation bubble (LSB) formation using surface pressure measurements, oil film visualization, force balance, and CFD. Three teardrop cylinders with thickness ratios of 0.2, 0.3, and 0.4 are examined in the Reynolds number range 2.8x104 ≤ Re ≤ 1.5x105 and angles of attack 0°, 0.5°, 1°, 2.5°, 5°, and 10° with a focus on the critical regime. Increased cylinder thickness amplifies CpRMS, discourages LSB formation at lower angles of attack, and influences flow dynamics. The traditional teardrop geometry, compared to NACA airfoils and thinner teardrop models, exhibits a windward LSB, leading to atypical lift, drag, and critical Reynolds number characteristics. The study explores non-stationary features, vortex shedding Strouhal numbers, spanwise LSB formation, trip strips, and CFD simulations using the k-kl-ω turbulence model. These insights deepen the understanding of LSB dynamics in the critical regime.

    摘要 II SUMMARY III ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XIX CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature 2 CHAPTER 2 METHOD AND SETUP 9 2.1 LSB Regimes 9 2.2 Wind tunnel 11 2.3 Experimental parameters 11 2.4 Models 11 2.5 Characteristic length & width 13 2.6 Endplate setup 14 2.7 Free end condition setup 16 2.8 Angle of attack calibrator 16 2.9 Pressure measurements 17 2.10 Oil film visualization 19 2.11 Oil film visualization and surface pressure comparison 20 2.12 Accelerometer 20 2.13 FFT and spectrogram 20 2.14 Cross hot-wire 21 2.15 Intermittency frequency noise analysis 21 2.16 Strouhal number noise analysis 22 2.17 Force balance 22 2.18 Trip Strip 22 2.19 CFD 23 2.20 Definitions 26 CHAPTER 3 RESULTS AND DISCUSSION 28 3.1 LSB regime overview 28 3.2 Ranges of the critical regime (T20, T30, and T40 at AOA = 0°) 30 3.3 Ranges of the critical regime (C and Cw) 31 3.4 Physical findings in LSB pressure measurements 32 3.4.1 T20 32 3.4.2 T30 35 3.4.3 T40 37 3.5 Characteristics due to small AOA changes (0°, 0.5°, 1°) 40 3.6 Cd, drag crisis, and base pressure coefficient 43 3.6.1 AOA = 0° 45 3.6.2 AOA = 2.5° 46 3.6.3 AOA = 5° 46 3.6.4 AOA=10° 47 3.6.5 Windward and leeward LSB comparison 47 3.6.6 Cd in literature 49 3.7 Spatial and temporal LSB distribution 51 3.7.1 Temporal LSB formation 51 3.7.2 Spanwise LSB formation: AOA = 0° 52 3.7.3 Spanwise LSB formation: T20 critical model width at AOA = 0° 56 3.8 Non-stationary factors 59 3.8.1 Examples: LSB intermittency 59 3.8.1.1 Examples 1-2: Calm and vibrant LSB 59 3.8.1.2 Example 3: Sudden critical regime 65 3.8.1.3 Example 4: Low intermittency critical regime 66 3.8.2 CpRMS 68 3.8.3 Vortex shedding: T20, T30, and T40 70 3.8.4 Vortex shedding: Spectrogram 72 3.8.5 Strouhal number: T40 endplate vs T40 free end condition 77 3.8.6 Kelvin-Helmholtz instabilities 78 3.9 Negative lift coefficient (T40) 78 3.10 Hysteresis 82 3.11 CFD 84 3.11.1 CFD validating experiments 84 3.11.2 CFD with conducive LSB conditions 87 3.11.3 CFD and flow separation 89 3.11.4 CFD and turbulent reattachment 91 3.11.5 CFD limitations and literature 94 3.12 Trip Strip 95 3.12.1 Trip strip oil film visualization 95 3.12.2 Trip strip separation location 97 3.13 Bicycle support application 100 CHAPTER 4 CONCLUSIONS AND SUGGESTIONS 101 REFERENCES 103 APPENDIX A. PRESSURE TAP LOCATIONS 109 APPENDIX B. LSB REGIMES AND LOCATIONS 110 APPENDIX C. STROUHAL NUMBER FREQUENCY IDENTIFICATION 114 APPENDIX D. INTERMITTENCY EXAMPLES AND FREQUENCY ANALYSIS 116

    [1] G. Chopra and S. Mittal, “The intermittent nature of the laminar separation bubble on a cylinder in uniform flow,” Comput Fluids, vol. 142, 2017, doi: 10.1016/j.compfluid.2016.06.017.
    [2] P. Dong, J. J. Miau, and A. Zoghlami, “An experimental study about drag crisis phenomenon on teardrop model,” J of Aero and Avia, vol. 51, no. 2, 2019, doi: 10.6125/JoAAA.201906_51(2).01.
    [3] J. J. Miau, Y. H. Lai, P. Dong, and A. Zoghlami, “Unsteadiness of laminar separation bubble on blunt body,” Adv Exp Mechan, vol. 4, pp. 3–16, 2019.
    [4] R. Deshpande, V. Kanti, A. Desai, and S. Mittal, “Intermittency of laminar separation bubble on a sphere during drag crisis,” J Fluid Mech, vol. 812, 2017, doi: 10.1017/jfm.2016.827.
    [5] K. L. Hansen, R. M. Kelso, and B. B. Dally, “The effect of leading edge tubercle geometry on the performance of different airfoils,” ExHFT-7, no. 28 June – 03 July, 2009.
    [6] S. Yarusevych, P. E. Sullivan, and J. G. Kawall, “On vortex shedding from an airfoil in low-Reynolds-number flows,” J Fluid Mech, vol. 632, 2009, doi: 10.1017/S0022112009007058.
    [7] K. L. Hansen, R. M. Kelso, A. Chouchry, and M. Arjomandi, “Laminar separation bubble effect on the lift curve slope of an airfoil,” in Proceedings of the 19th Australasian Fluid Mechanics Conference, AFMC 2014, 2014.
    [8] A. Sidorenko, “NCKU – ITAM Scientific Collaboration in UAV,” 2020, Institute of Theoretical and Applied Mechanics (ITAM), Siberian branch of the Russian Academy of Sciences, Novosibirsk, Russia.
    [9] M. S. Genç, I. Karasu, and H. Hakan Açikel, “An experimental study on aerodynamics of NACA 2415 aerofoil at low Re numbers,” Exp Therm Fluid Sci, vol. 39, 2012, doi: 10.1016/j.expthermflusci.2012.01.029.
    [10] P. Dong, “An experimental study about drag crisis phenomenon on a teardrop,” Master’s Thesis, Tainan (TW): National Cheng Kung University, 2018.
    [11] C. Wieselsberger, “New Data on the Laws of Fluid Resistance,” NACA-TN-84, vol. 30, no. I, 1922.
    [12] M. Boutilier and S. Yarusevych, “Parametric study of separation and transition characteristics over an airfoil at low Reynolds numbers,” Exp Fluids, vol. 52, no. 6, 2012, doi: 10.1007/s00348-012-1270-z.
    [13] M. S. Genç, I. Karasu, and H. Hakan Açikel, “An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers,” Exp Therm Fluid Sci, vol. 39, 2012, doi: 10.1016/j.expthermflusci.2012.01.029.
    [14] P. B. S. Lissaman, “Low-Reynolds number airfoils,” Annu Rev Fluid Mech, vol. 15, 1983, doi: 10.1146/annurev.fl.15.010183.001255.
    [15] A. Zoghlami, “Effect of roughness on flow over a teardrop model,” Master’s Thesis, Tainan (TW): National Cheng Kung University, 2019.
    [16] S. Wong, “Aerodynamic drag reduction with truncated ellipse airfoil in cycling aerodynamics,” Master Thesis, Tainan (TW): National Cheng Kung University, 2016.
    [17] I. Tani, “Low-speed flows involving bubble separations,” Prog in Aero Sci, vol. 5, no. C, 1964, doi: 10.1016/0376-0421(64)90004-1.
    [18] H. P. Horton, “Laminar separation bubbles in two- and three-dimensional incompressible flow,” Ph.D. dissertation, London (UK): University of London, 1968.
    [19] B. H. Carmichael, Low Reynolds number airfoil survey, vol. 1. Hampton (USA): NASA Contractor Report, Report No: 165803, 1982.
    [20] M. Jahanmiri, “Laminar separation bubble: its structure, dynamics and control,” Research Report, no. 6, 2011.
    [21] D. Simoni, M. Ubaldi, and P. Zunino, “Experimental investigation of the interaction between incoming wakes and instability mechanisms in a laminar separation bubble,” Exp Therm Fluid Sci, vol. 50, 2013, doi: 10.1016/j.expthermflusci.2013.05.004.
    [22] J. H. Watmuff, “Evolution of a wave packet into vortex loops in a laminar separation bubble,” J Fluid Mech, vol. 397, 1999, doi: 10.1017/S0022112099006138.
    [23] T. M. Kirk and S. Yarusevych, “Vortex shedding within laminar separation bubbles forming over an airfoil,” Exp Fluids, vol. 58, no. 5, 2017, doi: 10.1007/s00348-017-2308-z.
    [24] M. Genç, I. Karasu, H. Açıkel, and M. Akpolat, “Low Reynolds Number Flows and Transition,” in Low Reynolds Number Aerodynamics and Transition, Genç Mustafa, Ed., 2012.
    [25] O. Lehmkuhl, I. Rodríguez, R. Borrell, J. Chiva, and A. Oliva, “Unsteady forces on a circular cylinder at critical Reynolds numbers,” Physics of Fluids, vol. 26, no. 12, 2014, doi: 10.1063/1.4904415.
    [26] S. I. Benton and M. R. Visbal, “Effects of compressibility on dynamic-stall onset using large-eddy simulation,” Amer Inst of Aero and Astro, vol. 58, no. 3, Mar. 2020.
    [27] W. Zhang, R. Hain, and C. J. Kähler, “Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil,” Exp Fluids, vol. 45, no. 4, 2008, doi: 10.1007/s00348-008-0563-8.
    [28] C. F. Heddleson and D. L. Brown, “Summary of drag coefficients of various shaped cylinders,” Cincinnati, Ohio, 1957.
    [29] Y. H. Lai, J. J. Miau, G. T. Zhung, M. C. Tsai, and J. C. Wu, “Characteristics of Separation-Bubble Formation on Finite Circular Cylinder in Critical Transition Range,” AIAA Journal, pp. 1–17, Jul. 2023, doi: 10.2514/1.J062898.
    [30] D. Lee et al., “Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers,” Physics of Fluids, vol. 27, no. 2, 2015, doi: 10.1063/1.4913500.
    [31] D. Ma, Y. Zhao, Y. Qiao, and G. Li, “Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number,” 2015. doi: 10.1016/j.cja.2015.05.012.
    [32] Y. Zhou and Z. J. Wang, “Effects of surface roughness on separated and transitional flows over a wing,” AIAA J, vol. 50, no. 3, 2012, doi: 10.2514/1.J051237.
    [33] M. S. Istvan and S. Yarusevych, “Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil,” Exp Fluids, vol. 59, no. 3, 2018, doi: 10.1007/s00348-018-2511-6.
    [34] Wen-Wen Lin, “Investigation of flow field on a 3D axisymmetric teardrop bluff body in the surface vicinity,” Master’s Thesis, National Cheng Kung University, Tainan, 2024.
    [35] J. Graham, “Effect of end-plates on the two-dimensionality of a vortex wake,” Aero Quarterly, vol. 20, no. 3, 1969, doi: 10.1017/s0001925900005059.
    [36] M. J. Ezadi Yazdi and A. Bak Khoshnevis, “Comparing the wake behind circular and elliptical cylinders in a uniform current,” SN Appl Sci, vol. 2, no. 5, May 2020, doi: 10.1007/s42452-020-2698-z.
    [37] T. A. Fox and G. S. West, “On the use of end plates with circular cylinders,” Exp Fluids, vol. 9, no. 4, 1990, doi: 10.1007/BF00190426.
    [38] P. K. Stansby, “The effects of end plates on the base pressure coefficient of a circular cylinder,” 1974.
    [39] Y. Kubo and K. Kato, “The role of end plates in two dimensional wind tunnel tests,” Structural Eng./ Earthquake Eng, vol. 3, no. 1, pp. 167–174, Apr. 1986.
    [40] C. Farell and S. K. Fedeniuk, “Effect of end plates on the flow around rough cylinders,” J of Wind Eng and Indust Aero, vol. 28, no. 1–3, 1988, doi: 10.1016/0167-6105(88)90118-3.
    [41] W. J. Yang, Handbook of Flow Visualization. CRC Press, 2018. doi: 10.1201/9780203752876.
    [42] Z. Chen and R. J. Martinuzzi, “Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone,” Physics of Fluids, vol. 30, no. 4, 2018, doi: 10.1063/1.5018485.
    [43] Yu-Hsin Chen, “Vortex system research on spanwise-varying leading-edge contours of the UCAV configuration,” Master’s Thesis, National Cheng Kung University, Tainan, 2022.
    [44] A. Mishra, G. Kumar, and A. De, “Prediction of separation induced transition on thick airfoil using non-linear URANS based turbulence model,” Journal of Mechanical Science and Technology, vol. 33, no. 5, 2019, doi: 10.1007/s12206-019-0419-6.
    [45] M. Marquillie, U. Ehrenstein, and J. P. Laval, “Instability of streaks in wall turbulence with adverse pressure gradient,” J Fluid Mech, vol. 681, 2011, doi: 10.1017/jfm.2011.193.
    [46] A. Samson, K. Naicker, and S. S. Diwan, “Instability mechanisms and intermittency distribution in adverse pressure gradient attached and separated boundary layers,” Physics of Fluids, vol. 33, no. 9, 2021, doi: 10.1063/5.0060330.
    [47] H. Taghavi and A. R. Wazzan, “Spatial stability of some Falkner-Skan profiles with reversed flow,” Physics of Fluids, vol. 17, no. 12, 1974, doi: 10.1063/1.1694688.
    [48] N. K. Delany and N. E. Sorensen, “Low-speed drag of cylinders of various shapes,” National advisory committee for aeronautics, no. 1, 1953.
    [49] M. A. Akimov and P. A. Polivanov, “Results of numerical simulation on a thick teardrop airfoil at low Reynolds numbers,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/2057/1/012074.
    [50] H. Eisenlohr and H. Eckelmann, “Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number,” Physics of Fluids A, vol. 1, no. 2, 1989, doi: 10.1063/1.857488.
    [51] P. W. Bearman, “On vortex shedding from a circular cylinder in the critical Reynolds number regime,” J Fluid Mech, vol. 37, no. 3, pp. 577–585, 1969.
    [52] A. Pelletier and T. J. Mueller, “Effect of endplates on two-dimensional airfoil testing at low Reynolds number,” J Aircr, vol. 38, no. 6, 2001, doi: 10.2514/2.2872.
    [53] T. M. K. G. P. , L. M. V. Grundy, “Effects of acoustic disturbances on low re aerofoil flows,” in Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, 1st ed., vol. 195, T. J. Mueller and P. Zarchan, Eds., Lexington, Massachusetts: American Institute of Aeronautics and Astronautics Inc., 2001, ch. 6, pp. 91–113.
    [54] C. Zhang, S. Moreau, and M. Sanjosé, “Turbulent flow and noise sources on a circular cylinder in the critical regime,” AIP Adv, vol. 9, no. 8, 2019, doi: 10.1063/1.5121544.
    [55] M. Gaster, “The Structure and Behaviour of Laminar Separation Bubbles,” Aeronautical Research Council Reports and Memoranda, no. 3595, 1967.
    [56] T. Michelis, M. Kotsonis, and S. Yarusevych, “Spanwise flow structures within a laminar separation bubble on an airfoil,” in 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, 2017.
    [57] G. Chopra and S. Mittal, “Numerical simulations of flow past a circular cylinder,” in Journal of Physics: Conference Series, 2017. doi: 10.1088/1742-6596/822/1/012019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE