| 研究生: |
黃嘉容 Huang, Jia-Rung |
|---|---|
| 論文名稱: |
鋼筋混凝土梁在彎矩和扭矩組合載重作用下之行為研究 Behavior of Reinforced Concrete Beams under Combined Bending and Torsion |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 扭矩對彎矩之比值 、縱向鋼筋 、應變分佈 |
| 外文關鍵詞: | strain distribution, torque-to-bending ratio, longitudinal steel |
| 相關次數: | 點閱:65 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在探討配置不同縱向鋼筋量之鋼筋混凝土梁,受到彎矩和扭矩之組合載重作用下之承力行為。經由試驗方法來比較鋼筋混凝土梁在組合載重下之強度與勁度的差異、試體表面裂縫的發展、混凝土軟化以及頂面內部應變的變化。
本研究共規劃13根斷面尺寸為420×420mm之鋼筋混凝土方形斷面試體,其中包括高強度混凝土(fc’=69 MPa) 11根以及普通強度混凝土(fc’=35 MPa) 2根。主要考慮變數為縱向鋼筋量(Al)、扭矩和彎矩組合載重比例值(T/M)及混凝土抗壓強度(fc’)等。
研究結果顯示:(1)試體之實測開裂強度與Collins的預測式所得到之開裂強度的比值介於0.7~0.9之間。對於配置較高縱向鋼筋量之C系列試體,在承受彎矩和扭矩之組合載重作用時,試體之實測極限強度值為理論預測式所得到之極限強度值的1.2倍;(2)當試體內部的鋼筋量相同之情況下,試體受組合載重作用之扭矩比重越小時,開裂初期的扭轉勁度與撓曲勁度均會增加;(3)試體頂面混凝土之主張應變會隨著T/M比例值的增加而增大,進而造成頂面混凝土之極限主壓應變值因軟化現象而降低;(4)在達極限階段時,試體頂面的壓力區厚度會隨著T/M比值下降而減小。當試體所承受彎矩和扭矩之組合載重的比例值(T/M)為Tu0/Mu0時,達極限強度時頂面壓力區厚度會隨試體配置之縱向鋼筋量的增加而增大。
參考文獻
1. Lessig, N. N., “Studies of Cases of Concrete Failure in Rectangular Reinforced Concrete Elements Subjected to Combined Flexure and Torsion,” Design of Reinforced Structures, State Publishing Offices of Literature on Structural Engineering, Architecture and Construction Materials, Moscow, 1961, pp. 229-271.
2. Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Ultimate Strength of Reinforced Concrete Beam Subjected to Combined Torsion and Bending,” Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, 1968, pp. 379-402.
3. Hsu, T. T. C., and Mo, Y. L., “Softening of Concrete in Torsional Members -Theory and Test,” ACI Journal, Proceedings V.82, No 3, May-June 1985, pp. 290-303.
4. Hsu, T. T. C., and Mo, Y. L., “Softening of Concrete in Torsional Members - Prestressed Concrete,” ACI Journal, Proceedings V.82, No 5, Sept.-Oct. 1985, pp. 603-615.
5. Vecchio, F. J., and Collins, M. P., “Stress-strain characteristic of reinforced concrete in pure shear,” LABSE Colloquium, Advanced Mechanics of Reinforced Concrete, Delft, Final Report, International Association of Bridge and Structural Engineering, Zurich, Switzerland, 1981, pp. 221-225.
6. Vecchio, F. J., and Collins, M. P., “Modified Compression-Field Theory for Concrete Elements Subjected to Shear,” ACI Journal, Proceedings V.83, No. 2, Mar.-Apr. 1986, pp. 219-231.
7. Mohammed, T., “Experimental Investigation of the Shear Flow Zone in Torsional Members, ” Master’s thesis, University of Missouri-Rolla, 1998, 180 pp.
8. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02),” American Concrete Institute, Michigan, 2002, 443 pp.
9. Rajagopalan, K. S.; Behera, U.; and Ferguson, P. M., “Partially Over-Reinforced Concrete Beams Under Pure Torsion, ” ACI Journal, Proceedings V. 68, No. 10, Oct. 1971, pp. 740-747.
10. Collins, M. P., and Mitchell, D., “Shear and Torsion Design of Prestressed and Non-Prestressed Concrete Beam,” PCI Journal, V. 5, No. 5, Sept.-Oct. 1980, pp. 44-76.
11. Ewida, A. A., and McMullen, A. E., “Concrete Members under Combined Torsion and Shear, ” Journal of the Structural Division. ASCE, V. 108, No. ST4, Apr. 1982, pp. 911-928.
12. Mitchell, D., and Collins, M. P., “Diagonal Compression Field Theory -A Rational Model for Structural Concrete in Pure Torsion, ” ACI Journal, Proceedings V. 71, No. 8, Aug. 1974, pp. 396-408.
13. Ewida, A. A., and McMullen, A. E., “Torsion-shear-flexure interaction in reinforced concrete members, ” Magazine of Concrete Research, V. 33, No. 115, June 1981, pp. 113-122.